A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of the redox-dependent intein system for enhancing production of the cyclic green fluorescent protein. | LitMetric

To expand the reported redox-dependent intein system application, in this work, we used the split intein variant with highly trans-splicing efficiency and minimal extein dependence to cyclize the green fluorescent protein variant reporter in vitro. The CPG residues were introduced adjacent to the intein's catalytic cysteine for reversible formation of a disulfide bond to retard the trans-splicing reaction under the oxidative environment. The cyclized reporter protein in Escherichia coli cells was easily prepared by organic extraction and identified by the exopeptidase digestion. The amounts of extracted cyclized protein reporter in BL21 (DE3) cells were higher than those in hyperoxic SHuffle T7 coexpression system for facilitating the disulfide bond formation. The double His6-tagged precursor was purified for in vitro cyclization of the protein for 3 h. Compared with the purified linear counterpart, the cyclic reporter showed about twofold increase in fluorescence intensity, exhibited thermal and hydrolytic stability, and displayed better folding efficiency in BL21 (DE3) cells at the elevated temperature. Taken together, the developed redox-dependent intein system will be used for producing other cyclic disulfide-free proteins. The cyclic reporter is a potential candidate applied in certain thermophilic aerobes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2023.106272DOI Listing

Publication Analysis

Top Keywords

redox-dependent intein
12
intein system
12
green fluorescent
8
fluorescent protein
8
disulfide bond
8
bl21 de3
8
de3 cells
8
cyclic reporter
8
protein
5
reporter
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!