Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2023.166720 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Medical Genetics, National Taiwan University Hospital, 19F, No. 8, Chung-Shan South Road, Taipei City, Taiwan.
Background: The homologous recombination deficiency (HRD) test is an important tool for identifying patients with epithelial ovarian cancer (EOC) benefit from the treatment with poly(adenosine diphosphate-ribose) polymerase inhibitor (PARPi). Using whole exome sequencing (WES)-based platform can provide information of gene mutations and HRD score; however, the clinical value of WES-based HRD test was less validated in EOC.
Methods: We enrolled 40 patients with EOC in the training cohort and 23 in the validation cohort.
Background: Esophageal and gastric cancer were among the top 10 most common cancers worldwide. In addition, sex-specific differences were observed in the incidence. Due to their anatomic proximity, the 2 cancers have both different but also shared risk factors and epidemiological features.
View Article and Find Full Text PDFReprod Health
January 2025
Department of Obstetrics and Gynecology, School of Medicine, University of California Irvine, Irvine, CA, USA.
Background: Refugee women's reproductive health (RH) outcomes have been impacted by several factors, including experiencing war, lack of access to healthcare, and possible gender-based violence. After resettlement, low health literacy, financial difficulties, cultural and linguistic barriers, and unfamiliarity with the healthcare system also add to the preexisting barriers. Although several efforts have focused on health education and improving health literacy among refugee women, there has not been a validated tool to measure the effectiveness of these trainings and their possible impact.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!