Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using a generalized estimating equation (GEE) can lead to a bias in regression coefficients for a small sample or sparse data. The bias-corrected GEE (BCGEE) and penalized GEE (PGEE) were proposed to resolve the small-sample bias. Moreover, the standard sandwich covariance estimator leads to a bias of standard error for small samples; several modified covariance estimators have been proposed to address this issue. We review the modified GEEs and modified covariance estimators, and evaluate their performance in sparse binary data from small-sample longitudinal studies. The simulation results showed that GEE and BCGEE often failed to achieve convergence, whereas the convergence proportion for PGEE was quite high. The bias for the regression coefficients was generally in the ascending order of PGEE BCGEE GEE. However, PGEE and BCGEE did not sufficiently remove the bias involving 20-30 subjects with unequal exposure levels with a 5% response rate. The coverage probability (CP) of the confidence interval for BCGEE was relatively poor compared with GEE and PGEE. The CP with the sandwich covariance estimator deteriorated regardless of the GEE methods under the small sample size and low response rate, whereas the CP with the modified covariance estimators-such as Morel's method-was relatively acceptable. PGEE will be the reasonable way for analyzing sparse binary data in small-sample studies. Instead of using the standard sandwich covariance estimator, one should always apply the modified covariance estimators for analyzing these data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.9744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!