Isotope study of the nonlinear pressure shifts of Rb and Rb hyperfine resonances in Ar, Kr, and Xe buffer gases.

J Chem Phys

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.

Published: April 2023

Measurements of the 0-0 hyperfine resonant frequencies of ground-state Rb atoms show a nonlinear dependence on the pressure of the buffer gases Ar, Kr, and Xe. The nonlinearities are similar to those previously observed with Rb and Cs and presumed to come from alkali-metal-noble-gas van der Waals molecules. However, the shape of the nonlinearity observed for Xe conflicts with previous theory, and the nonlinearities for Ar and Kr disagree with the expected isotopic scaling of previous Rb results. Improving the modeling alleviates most of these discrepancies by treating rotation quantum mechanically and considering additional spin interactions in the molecules. Including the dipolar-hyperfine interaction allows simultaneous fitting of the linear and nonlinear shifts of both Rb and Rb in either Ar, Kr, or Xe buffer gases with a minimal set of shared, isotope-independent parameters. To the limit of experimental accuracy, the shifts in He and N were linear with pressure. The results are of practical interest to vapor-cell atomic clocks and related devices.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0145919DOI Listing

Publication Analysis

Top Keywords

buffer gases
12
isotope study
4
study nonlinear
4
nonlinear pressure
4
pressure shifts
4
shifts hyperfine
4
hyperfine resonances
4
resonances buffer
4
gases measurements
4
measurements 0-0
4

Similar Publications

In the present study, we deposited buffer solutions containing hydrophobic (GA) fibrils onto highly oriented pyrolytic graphite (HOPG) and imaged the surfaces through atomic force microscopy (AFM). Within 3 h of applying ambient (nondegassed) buffers, we observed the formation of two-dimensional stripe-like domains on the HOPG surfaces surrounding the (GA) fibrils. However, these stripe domains did not form under degassed buffers.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Enzyme stability can be measured in a number of ways, including melting temperature, activity retention, and size analysis. However, these measurements are often conducted in an idealized storage buffer and not in the relevant enzymatic reaction media. Particularly for reactions that occur in alkaline, volatile, and high ionic strength media, typical analyses using differential scanning calorimetry, light scattering, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis are not satisfactory to track the stability of these enzymes.

View Article and Find Full Text PDF

Objectives: To evaluate the base excess response during acute in vivo carbon dioxide changes.

Design: Secondary analysis of individual participant data from experimental studies.

Setting: Three experimental studies investigating the effect of acute in vivo respiratory derangements on acid-base variables.

View Article and Find Full Text PDF

Polyphenol oxidase (PPO) is among the most detrimental enzymes in processed plant foods, being responsible for enzymatic browning. To propose a "mild" alternative to traditional enzymatic inactivation methods, this study investigated the effect of cold atmospheric plasma (CAP) on PPO inactivation and highlighted the role of different sugars on both inactivation and structural modification of this enzyme. Different model systems were prepared in phosphate buffer using a purified PPO either alone or added with glucose, fructose, sucrose, and trehalose at different concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!