Disruption of lineage integrity as a precursor to breast tumor initiation.

Trends Cell Biol

CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France. Electronic address:

Published: October 2023

Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2023.03.010DOI Listing

Publication Analysis

Top Keywords

breast tumor
12
lineage integrity
8
tumor initiation
8
cellular plasticity
8
disruption lineage
4
integrity precursor
4
breast
4
precursor breast
4
initiation increase
4
increase lineage
4

Similar Publications

Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.

View Article and Find Full Text PDF

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

Tumor cell-derived N-acetyl-aspartyl-glutamate reshapes the tumor microenvironment to facilitate breast cancer metastasis.

Sci Bull (Beijing)

December 2024

Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.

View Article and Find Full Text PDF

Introduction: The aim of this study was to assess the long-term impact and potential effectiveness of our specialized acellular dermal matrix (ADM) in a two-stage breast reconstruction process.

Objective: Opinions regarding the use of ADMs are currently divided. While their positive contribution to reconstructive breast surgery is evident, the results of studies vary depending on specific procedures, patient selection, and techniques employed.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype characterized by aggressive clinical behavior and poor prognosis. The immune landscape associated with TNBC often reveals high immunogenicity. Therefore, immunotherapy, which has demonstrated its efficacy in different cancer types, could be a promising strategy for TNBC, given the limited therapeutic options currently available besides conventional chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!