Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Inflammatory bowel disease (IBD) patients are accompanied by impaired intestinal barrier integrity and gut microbiota dysbiosis. Strategies targeting the gut microbiota are potential therapies for preventing and ameliorating IBD.
Main Methods: The potential roles of two probiotic stains, Bifidobacterium longum BL986 (BL986) and Lactobacillus casei LC122 (LC122), on intestinal mucosal barrier function and microbiota in IBD zebrafish of different ages were investigated.
Key Findings: BL986 and LC122 treatment promoted the development and increased the microbiota diversity in larval zebrafish. Both probiotic treatment ameliorated mortality, promoted intestinal mucus secretion, and reduced the expression of inflammatory markers, thereby improving intestinal mucosal barrier function in dextran sulfate sodium salt (DSS)-induced ulcerative colitis (UC) and 2,4,6-trinitro-benzenesulfonicacid (TNBS)-induced Crohn's disease (CD) models in zebrafish. Moreover, the composition and function of microbiota were altered in IBD zebrafish, and probiotics treatment displayed prominent microbiota features. BL986 was more potent in the DSS-induced UC model, and increased the abundance of Faecalibaculum and butyric acid levels. LC122 exerted better protection against TNBS-induced CD, and increased the abundance of Enhydrobacter and acetic acid levels. Furthermore, the effect of probiotics was stronger in larval and aged zebrafish.
Conclusion: The impact of probiotics on IBD might differ from the subtypes of IBD and the age of the zebrafish, suggesting the types of disease and age should be taken into full consideration during the practical usage of probiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.121699 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!