Antibiotic resistomes in leaf endophytes of vegetables threaten human health through the food chain. However, little is known about the ability of long-term manure fertilization to impact the deep selection of antibiotic resistance genes (ARGs) in leaf endophytes of vegetables planted in different types of soils. Here, by high-throughput quantitative PCR, we characterized the ARGs of leaf endophytes of Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) grown in long-term (14 year) manure-amended acidic, neutral and calcareous soils. In total, 87 ARGs and 4 mobile genetic elements (MGEs) were detected in all the samples. Manure fertilization significantly increased the ARG numbers and normalized abundance in leaf endophytes, especially in acidic soil. Moreover, in acidic soil, manure application also led to a higher increase in the normalized abundance of opportunist and specialist ARGs, and more opportunist and specialist ARGs posed a high risk according to their risk ranks. Random forest analysis revealed that Proteobacteria and MGEs were the major drivers affecting the normalized abundance of opportunist and specialist ARGs in both acidic and neutral soils, respectively. In calcareous soil, Cyanobacteria and Actinobacteria were the most important contributors. Collectively, this study expands our knowledge about the deep selection of plant resistomes under long-term manure application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163334DOI Listing

Publication Analysis

Top Keywords

leaf endophytes
20
deep selection
12
normalized abundance
12
opportunist specialist
12
specialist args
12
selection antibiotic
8
antibiotic resistomes
8
resistomes leaf
8
endophytes chinese
8
chinese cabbage
8

Similar Publications

Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.

View Article and Find Full Text PDF

Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.

View Article and Find Full Text PDF

Exploring endophytic fungi from Cynodon dactylon: GC-MS profiling and biological activity.

Fungal Genet Biol

December 2024

National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology-Fungi, MACS- Agharkar Research Institute, Gopal Ganesh Agharkar Road, Pune 411 004, Maharashtra, India. Electronic address:

The rapid decline of significant plant species due to deforestation and slow regrowth has endangered many trees that are crucial for producing life-saving medications. This dual crisis of conserving plant biodiversity while meeting pharmaceutical demands necessitates innovative solutions. Endophytic fungi, naturally occurring symbionts within plants, present an eco-friendly and economically viable alternative.

View Article and Find Full Text PDF

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

Sisal () bole rot caused by is the main phytosanitary problem affecting sisal in the Brazilian semi-arid region. The aim of this study was to evaluate spp. as biocontrol agents for sisal bole rot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!