Topic Importance: Right ventricular dysfunction in pulmonary hypertension (PH) contributes to reduced exercise capacity, morbidity, and mortality. Exercise can unmask right ventricular dysfunction not apparent at rest, with negative implications for prognosis.
Review Findings: Among patients with pulmonary vascular disease, right ventricular afterload may increase during exercise out of proportion to increases observed among healthy individuals. Right ventricular contractility must increase to match the demands of increased afterload to maintain ventricular-arterial coupling (the relationship between contractility and afterload) and ultimately cardiac output. Impaired right ventricular contractile reserve leads to ventricular-arterial uncoupling, preventing cardiac output from increasing during exercise and limiting exercise capacity. Abnormal pulmonary vascular response to exercise can signify early pulmonary vascular disease and is associated with increased mortality. Impaired right ventricular contractile reserve similarly predicts poor outcomes, including reduced exercise capacity and death. Exercise provocation can be used to assess pulmonary vascular response to exercise and right ventricular contractile reserve. Noninvasive techniques (including cardiopulmonary exercise testing, transthoracic echocardiography, and cardiac MRI) as well as invasive techniques (including right heart catheterization and pressure-volume analysis) may be applied selectively to the screening, diagnosis, and risk stratification of patients with suspected or established PH. Further research is required to determine the role of exercise stress testing in the management of pulmonary vascular disease.
Summary: This review describes the current understanding of clinical applications of exercise testing in the risk assessment of patients with suspected or established PH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504600 | PMC |
http://dx.doi.org/10.1016/j.chest.2023.04.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!