Drugs targeting DNA repair have developed rapidly in cancer therapy, and numerous inhibitors have already been utilized in preclinical and clinical stages. To optimize the selection of patients for treatment, it is essential to discover biomarkers to anticipate chemotherapy response. The DNA mismatch repair (MMR) pathway is closely correlated with cancer susceptibility and plays an important role in the occurrence and development of cancers. Here, we give a concise introduction of the MMR genes and focus on the potential biomarkers of chemotherapeutic response and resistance. It has been clarified that the status of MMR may affect the outcome of chemotherapy. However, the specific underlying mechanisms as well as contradictory results continue to raise considerable controversy and concern. In this review, we summarize the current literature to provide a general overview.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2023.117338 | DOI Listing |
J Gastrointest Oncol
December 2024
Department of Surgery, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA.
Background: Metastatic colon cancer (MCC) is a debilitating condition with a poor prognosis. Currently, there is limited data that investigates MCC in relation to mismatch repair (MMR) status. The aims of this study are to compare sociodemographic and clinicopathologic features and mortality between patients with MMR-proficient (MMR-P) and MMR-deficient (MMR-D) MCC.
View Article and Find Full Text PDFOncogene
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling.
View Article and Find Full Text PDFCell Prolif
January 2025
NewStem LTD, Jerusalem, Israel.
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death, whereas each of them separately does not. Synthetic lethality can be a useful tool in personalised oncology. MLH1 is a cancer-related gene that has a central role in DNA mismatch-repair and TP53 is the most frequently mutated gene in cancer.
View Article and Find Full Text PDFSci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!