Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A vast number of microarray datasets have been produced as a way to identify differentially expressed genes and gene expression signatures. A better understanding of these biological processes can help in the diagnosis and prognosis of diseases, as well as in the therapeutic response to drugs. However, most of the available datasets are composed of a reduced number of samples, leading to low statistical, predictive and generalization power. One way to overcome this problem is by merging several microarray datasets into a single dataset, which is typically a challenging task. Statistical methods or supervised machine learning algorithms are usually used to determine gene expression signatures. Nevertheless, statistical methods require an arbitrary threshold to be defined, and supervised machine learning methods can be ineffective when applied to high-dimensional datasets like microarrays. We propose a methodology to identify gene expression signatures by merging microarray datasets. This methodology uses statistical methods to obtain several sets of differentially expressed genes and uses supervised machine learning algorithms to select the gene expression signature. This methodology was validated using two distinct research applications: one using heart failure and the other using autism spectrum disorder microarray datasets. For the first, we obtained a gene expression signature composed of 117 genes, with a classification accuracy of approximately 98%. For the second use case, we obtained a gene expression signature composed of 79 genes, with a classification accuracy of approximately 82%. This methodology was implemented in R language and is available, under the MIT licence, at https://github.com/bioinformatics-ua/MicroGES.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.106867 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!