Remediating petroleum hydrocarbons in highly saline-alkali soils using three native plant species.

J Environ Manage

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Published: August 2023

Phytoremediation of total petroleum hydrocarbons (TPHs) contamination is a process that uses the synergistic action of plants and rhizosphere microorganisms to degrade, absorb and stabilize pollutants in the soil, and has received increasing attention in recent years. However, this technology still has some challenges under certain conditions (e.g., highly alkaline and saline environments). The present study was selected three native plant species (alfalfa, tall fescue, and ryegrass) to remediate petroleum pollutants in greenhouse pot experiments. The results indicate that TPH contamination not only inhibited plant growth, soil chemical properties and soil fertility (i.e. lower plant biomass, chlorophyll, pH, and electrical conductivity), but also increased the malondialdehyde, glutathione, and antioxidant enzyme activities (catalase and polyphenol oxidase). Further, correlation analysis results illustrated that TPH removal was strongly positively correlated with chlorophyll, soil fertility, and total organic carbon, but was negatively correlated with dehydrogenase, polyphenol oxidase, pH, and electrical conductivity. The highest TPHs removal rate (74.13%) was exhibited by alfalfa, followed by tall fescue (61.79%) and ryegrass (57.28%). The degradation rates of short-chain alkanes and low rings polycyclic aromatic hydrocarbons (PAHs) were substantially higher than those of long-chain alkanes and high rings PAHs. The findings of this study provide valuable insights into petroleum decontamination strategies in the highly saline - alkali environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117928DOI Listing

Publication Analysis

Top Keywords

petroleum hydrocarbons
8
three native
8
native plant
8
plant species
8
alfalfa tall
8
tall fescue
8
soil fertility
8
electrical conductivity
8
polyphenol oxidase
8
remediating petroleum
4

Similar Publications

Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Exogenous nitrogen supplementation for the bioremediation of petroleum-contaminated soils is a widely adopted and effective environmentally friendly strategy. However, the mechanism by which varying nitrogen dosages affect hydrocarbon degradation pathways remains unclear. This study conducted bioremediation on soil with a total petroleum hydrocarbon (TPH) content of 17,090 mg/kg over 210 days.

View Article and Find Full Text PDF

Temperate estuary wetlands act as natural filters for microbiological contamination and have a profound impact on "One Health." However, knowledge of microbiological ecology security across the different habitats in temperate estuarine wetlands remains limited. This study employed meta-analysis to explore the characteristics of bacterial communities, potential pathogens, and antibiotic resistance genes (ARGs) across three heterogeneous habitats (water, soil, and sediment) within the Liaohe Estuary landscape.

View Article and Find Full Text PDF

This study employed high-time-resolution systems to examine the transient properties of aerosols and gases emitted from electronic cigarette (EC) puffs. Using a fast aerosol sizer, we measured particle size distributions (PSDs) across various EC brands (JUUL, VUSE, VOOPOO), revealing sizes ranging from 5 to 1000 nm at concentrations of 10 to 10 cm. Most aerosols were found to be in the ultrafine range (below 100 nm), with JUUL-, VUSE-, and VOOPOO-producing aerosols with geometric mean sizes of 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!