Cinnamon essential oil (CEO)-based Pickering emulsions were prepared using chitosan (CS) and soy protein isolate (SPI) colloid particles as stabilizers and genipin as cross-linker. Pickering emulsions have smaller particle sizes, higher stability, and encapsulation efficiency at a CS:SPI ratio of 1:4. The Pickering emulsion-modified collagen films showed enhanced thermal stability, UV-blocking properties, and water resistance. In addition, the antioxidant (DPPH scavenging activity, 18.35%-50.59%) and antimicrobial activities (inhibition zone, Escherichia coli, 0-1.85 cm; Staphylococcus aureus, 0-1.57 cm; Pseudomonas fluorescens, 0-1.34 cm) of the films were improved due to the sustained release of CEO, with the release kinetics following the Fickian diffusion of the Ritger-Peppas model. When the functionalized film was used for pork preservation, a four-day extension of shelf life was observed. Collectively, our findings suggest that Pickering emulsions provide great potential for the application of collagen film in pork preservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136108 | DOI Listing |
Langmuir
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
An ammonium perchlorate (AP) composite system with double-coating encapsulation based on the interfacial polymerization behavior of dopamine (DA) in Pickering emulsions was designed to enhance the combustion performance of HTPB-based propellants. The composite system proved highly effective in mitigating the agglomeration issues associated with iron oxide nanoparticles (FeO NPs) as catalysts, with the AP exhibiting superior performance compared to the composite comprising pure FeO NPs. The results of the thermal decomposition experiments showed that the HTD temperature of AP@PDA@FeO was reduced to 318.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China.
Pickering emulsions (PEs) of natural plant proteins enriched in fat-soluble components are gaining consumer interest for healthier and sustainable products. The aim of this study is to prepare PEs for stabilizing almond protein isolated (API) particles loaded with astaxanthin using ultrasound technology. The loose structure of the API at pH levels of 3 and 12, with contact angles of 68.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
Traditional colitis treatment strategies have issues such as side effects and poor lesion targeting. In this study, a milled black rice particle-stabilized Pickering emulsion (BR-5-DMN) has been developed as a delivery vehicle for 5-demethylnobiletin (5-DMN) to treat colitis. The alleviating effects of three 5-DMN delivery systems: BR-5-DMN, Tween 80 emulsion for upper gastrointestinal delivery, and soybean oil with most 5-DMN entering the colon were compared.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China. Electronic address:
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. Electronic address:
The inherent propensity for aggregation necessitates the use of high concentrations of protein-polysaccharide nanoparticles to achieve stable Pickering emulsions. This study employed xanthan gum (XG) to mitigate the pronounced aggregation of zein nanoparticles by structure construction, thereby enhancing the emulsifying efficiency of zein/XG (Z/XG) nanoparticles. The Z/XG nanoparticles displayed significantly enhanced dispersity, with the absolute ζ-potential increasing from 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!