A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strong oxygen-content dependence of the magnetic excitations in antiferromagnetic NiO nanoparticles: A Raman probe. | LitMetric

Nanostructured antiferromagnetic (AFM) NiO has attracted much attention from both the fundamental and applied perspectives. Understanding the two-magnon (2 M) is of great significance in NiO applications such as spin valves and next-generation magnetic random access memories (MRAM). We investigated the phonon modes and antiferromagnetically ordered states of NiO nanoparticles prepared by empirically controlled measurements. An intensity enhancement of the 2 M mode was observed by Raman spectroscopy as the NiO nanoparticles were vacuum annealed at 650 ℃. The increased 2 M peak intensity in NiO nanoparticles is explained by the local symmetry conversions from NiO to NiO configurations due to the oxygen redistribution during the vacuum annealing. The change of the splitting of anisotropic transverse optical (TO) phonon with different oxygen contents was also revealed by the Raman spectroscopy. We have shown that the changes in the oxygen environment underlie both the change in the 2 M intensity and the splitting of TO phonon in the NiO nanoparticles. Our work offers an efficient avenue to strengthen the AFM ordering and emphasizes the effect of vacuum annealing of the NiO nanoparticles, opening the interesting possibility of individual parameter control in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.122700DOI Listing

Publication Analysis

Top Keywords

nio nanoparticles
24
nio
10
raman spectroscopy
8
vacuum annealing
8
nanoparticles
6
strong oxygen-content
4
oxygen-content dependence
4
dependence magnetic
4
magnetic excitations
4
excitations antiferromagnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!