Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The recent trend toward 10 MV for volumetric radiotherapy treatment such as volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS), and stereotactic ablative body radiotherapy (SABR) introduces photoneutron production, with implications for non-therapeutic patient dose and additional shielding requirements for treatment room design. The sharply nonlinear drop-off in photoneutron production below 10 MV to negligible at 6 MV has scarcely been characterized quantitatively, yet can elucidate important practical insights.
Purpose: To measure photoneutron yields in a medical linac at 8 MV, which may strike a reasonable balance between usefully increased beam penetration and dose rate as compared to 6 MV while reducing photoneutron production which is present at 10 MV.
Methods: A Varian iX linear accelerator undergoing decommissioning at our clinic was made to operate over a range of photon energies between 6 and 15 MV by calibrating the bending magnet and adjusting other beam generation parameters. Neutron dose within the treatment room was measured using an Anderson-Braun type detector over a continuum of intermediate energies.
Results: The photoneutron production for energies below 10 MV was measured, adding to data that is otherwise scarce in the literature. Our results are consistent with previously published results for neutron yield. We found that the photoneutron production at 8 MV was about 1/10 of the value at 10 MV, and about 10 times higher than detector background at 6 MV.
Conclusions: Photoneutron production drops off below 10 MV, but is still present at 8 MV. An 8 MV beam is more penetrating than a 6 MV beam, and may offer a suitable tradeoff for modern radiotherapy techniques such as VMAT, SRS, and SABR. Further studies are needed to better understand the impact on treatment plan quality between 8 and 10 MV beams considering the benefits to facility requirements and non-therapeutic patient dose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.16416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!