Ulcerative colitis (UC) is an idiopathic, chronic, relapsing disease. In most cases, only the distal colon is affected, and the colonic stasis or fast colonic transit through the inflamed colon usually results in reduced exposure of the distal inflamed colon. Although the immunosuppressant cyclosporine A (CsA) has been used in patients with severe colitis who do not respond to corticosteroids, the clinical application of CsA remains limited due to the systemic toxicities and insufficient accumulation at the site of action for the intravenous and oral routes. In this study, we loaded CsA into the amphipathic poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) micelles and then embedded them in hydrogels consisting of chitosan, poloxamer 188, and poloxamer 407 to construct a thermosensitive and mucoadhesive hydrogel drug delivery system (PLCP). The PLCP presented a high drug-loading capacity and showed a stable and rapid gelation rate after rectal administration into the body. Compared to CsA-loaded micelles and Sandimmun (Neoral), the developed thermosensitive gel exhibited prolonged retention on the inflamed colon, as seen from in vitro adhesion and in vivo distribution experiments. It also fast mitigated colitis symptoms in TNBS-treated mice by regulating the expression levels of proinflammatory cytokines (TNF-α, IL-1β, COX-2, and iNOS2), anti-inflammatory cytokines (IL-10, Nrf2, NQO1, and HO-1), and other relevant biochemical factors. Our results suggested that CsA-loaded micelle thermal hydrogel system could be a promising strategy by enhancing the retention in the diseased colon and promoting the relief and recovery of UC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-023-01317-8DOI Listing

Publication Analysis

Top Keywords

inflamed colon
12
hydrogel system
8
peg-pcl micelles
8
ulcerative colitis
8
colon
5
topical thermosensitive
4
thermosensitive hydrogel
4
system cyclosporine
4
cyclosporine peg-pcl
4
micelles alleviates
4

Similar Publications

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

Colon-resident CD8+ T cells actively contribute to gut homeostasis and the pathogenesis of inflammatory bowel disease. However, their heterogeneity in generating IL-17-expressing CD8+ T cells, i.e.

View Article and Find Full Text PDF

-Derived Exosome-Like Nanoparticles Mitigate Colitis in Mice via Inhibition of the NLRP3 Signaling Pathway and Modulation of the Gut Microbiota.

Int J Nanomedicine

January 2025

Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.

Background: Plant-derived exosome-like nanoparticles (PELNs) have received widespread attention in treating ulcerative colitis (UC). However, the role of -derived exosome-like nanoparticles (HELNs) in UC remains unclear. This study aims to evaluate the efficacy of HELNs in treating colitis in mice and investigate its potential mechanisms.

View Article and Find Full Text PDF

Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights.

J Adv Res

December 2024

Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Introduction: In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!