Purpose: This work aims to develop a fast and practical computation method for MR simulations. The computational cost of MR simulations is often high because magnetizations of many isochromats are updated using a small step size on the order of microseconds. There are two types of subsequences to be processed for the simulations: subsequences with and without RF pulses. While straightforward implementations spend most of their time calculating subsequences with RF pulses, there is a method which efficiently reuses the computation for repetitive RF pulses.
Theory And Methods: A new method for efficiently processing subsequences with RF pulses is proposed. Rather than using an iterative update approach, the proposed method computes the combined transition which combines all transitions applied iteratively for each subsequence with RF pulses. The combined transition is used again when the same subsequence is used later. The combined transitions are cached and managed using a least recently used algorithm.
Results: The proposed method was found to accelerate the simulation by ˜20 times when 3.9 million isochromats were simulated using spin-echo sequences. Even on a laptop computer, the proposed method was able to simulate these sequences in ˜3.5 min.
Conclusion: An efficient method for simulating pulse sequences is proposed. The proposed method computes and manages combined transitions, making MR simulation practical on a wide range of computers, including laptops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.29646 | DOI Listing |
Bioelectron Med
January 2025
School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.
Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.
View Article and Find Full Text PDFBMC Nurs
January 2025
Department of Orthopedic, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study aims to analyze the medical-seeking behavior of Osteogenesis Imperfecta(OI) children in Southwest China, summarize and analyze the issues in their medical process, and propose corresponding improvement strategies.
Methods: A phenomenological study involving semi-structured interviews with 20 OI caregivers at a tertiary centre for children from March to August 2021 was analyzed thematically, following Anderson's model.
Results: We identified eight themes in the data: 1)Regional disparities of OI management, 2)Big economic burden, 3)High-risk population, 4)Lack of health education, 5)Multiple treatments,6)Strict treatment indications,7)Disappointing therapeutic outcomes,8)Effective or ineffective treatment results.
J Orthop Surg Res
January 2025
Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, Aveiro, 3810-193, Portugal.
Background: Bone fractures represent a global public health issue. Over the past few decades, a sustained increase in the number of incidents and prevalent cases have been reported, as well as in the years lived with disability. Current monitoring techniques predominantly rely on imaging methods, which can result in subjective assessments, and expose patients to unnecessary cumulative doses of radiation.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Department of Science and Environment, Roskilde University, Roskilde, Denmark.
Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.
View Article and Find Full Text PDFChild Adolesc Psychiatry Ment Health
January 2025
Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia.
Objective: Life interference is a key diagnostic feature for anxiety and depressive disorders. Measures focusing on life interference caused by anxiety and depressive disorders in children and adolescents have received minimal attention. This study evaluated the psychometric properties of the Child Anxiety and Depression Life Interference Scale (CADLIS), a brief child (CADLIS-C) and parent-report (CADLIS-P) measure designed to assess life interference from anxiety and depressive disorders in both the child and parent's life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!