Puf3p regulates the stability of nuclear-encoded mRNAs acting in mitochondrial biogenesis and function in Saccharomyces cerevisiae. This work identifies the phosphorylation of Pop2p, a component of the deadenylase complex, as being critical for adapting Puf3p-mediated mRNA decay upon carbon source alterations. We demonstrate that the Puf3p-Pop2p association diminishes in mitochondria-reliant conditions and establish Yak1p, a kinase that phosphorylates Pop2p at threonine 97, as a new player in Puf3p-mediated regulation of mRNA decay. Yak1p deletion alters the half-life of Puf3p target mRNAs. Our findings outline a metabolism-driven regulatory switch, whereby, in mitochondria-independent conditions, Puf3p recruits Pop2p and the decay machinery to bound mRNAs for rapid decay. Conversely, in mitochondria-reliant conditions, the association of Puf3p with Yak1p increases, placing Yak1p proximal to neighboring Pop2p. Subsequent Pop2p phosphorylation reduces the Puf3p-Pop2p interaction and stabilizes Puf3p target mRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14624DOI Listing

Publication Analysis

Top Keywords

mrna decay
12
puf3p-mediated mrna
8
mitochondria-reliant conditions
8
puf3p target
8
target mrnas
8
puf3p
6
pop2p
6
decay
5
yak1p
5
yeast puf3p-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!