Is blood-brain barrier a probable mediator of non-invasive brain stimulation effects on Alzheimer's disease?

Commun Biol

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.

Published: April 2023

Alzheimer's disease (AD) is a complex neurodegenerative disease with no existing treatment leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the advent of first symptoms in AD and accompanies the progression of the disease. At the same time deliberate BBB opening may be beneficial for drug delivery in AD. Non-invasive brain stimulation (NIBS) techniques, primarily transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have shown multiple evidence of being able to alleviate symptoms of AD. Currently, TMS/tDCS mechanisms are mostly investigated in terms of their neuronal effects, while their possible non-neuronal effects, including mitigation of the BBB disruption, are less studied. We argue that studies of TMS/tDCS effects on the BBB in AD are necessary to boost the effectiveness of neuromodulation in AD. Moreover, such studies are important considering the safety issues of TMS/tDCS use in the advanced AD stages when the BBB is usually dramatically deteriorated. Here, we elucidate the evidence of NIBS-induced BBB opening and closing in various models from in vitro to humans, and highlight its importance in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104838PMC
http://dx.doi.org/10.1038/s42003-023-04717-1DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
non-invasive brain
8
brain stimulation
8
bbb opening
8
bbb
6
barrier probable
4
probable mediator
4
mediator non-invasive
4
stimulation
4
effects
4

Similar Publications

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Eli Lilly and Company, Indianapolis, IN, USA.

Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.

View Article and Find Full Text PDF

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Gladstone Institutes, UCSF, San Francisco, CA, USA.

Background: Cerebrovascular alterations and innate immune activation are key features of Alzheimer's disease (AD). However, the mechanisms that link blood-brain barrier disruption to neurodegeneration are poorly understood and well-defined druggable targets at the neurovascular interface are limited.

Method: By developing a multiomic and genetic loss-of-function pipeline, we reported the transcriptomic and global phosphoproteomic landscape of blood-induced microglia activation and the causal role for fibrin in induction of neurodegenerative genes and oxidative stress pathways in innate immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!