AI Article Synopsis

  • Nitrogen is often a limiting factor for plant growth due to most of it being in forms that plants can't easily absorb, and microbes play a key role in breaking down these compounds to release usable nitrogen.
  • The study analyzed gene expression related to nitrogen depolymerization in different soil habitats over time, finding that certain microbes, particularly proteases, showed varying levels of activity based on environmental factors such as the presence of roots.
  • Results indicated that specific microbial taxa could enhance nitrogen availability for plants, suggesting that understanding these interactions can inform strategies for improving plant nitrogen absorption in agricultural practices.

Article Abstract

Nitrogen (N) is frequently limiting to plant growth, in part because most soil N is present as polymeric organic compounds that are not readily taken up by plants. Microbial depolymerization of these large macromolecular N-substrates gradually releases available inorganic N. While many studies have researched and modeled controls on soil organic matter formation and bulk N mineralization, the ecological-spatial, temporal and phylogenetic-patterns underlying organic N degradation remain unclear. We analyzed 48 time-resolved metatranscriptomes and quantified N-depolymerization gene expression to resolve differential expression by soil habitat and time in specific taxonomic groups and gene-based guilds. We observed much higher expression of extracellular serine-type proteases than other extracellular N-degrading enzymes, with protease expression of predatory bacteria declining with time and other taxonomic patterns driven by the presence (Gammaproteobacteria) or absence (Thermoproteota) of live roots and root detritus (Deltaproteobacteria and Fungi). The primary chitinase chit1 gene was more highly expressed by eukaryotes near root detritus, suggesting predation of fungi. In some lineages, increased gene expression over time suggests increased competitiveness with rhizosphere age (Chloroflexi). Phylotypes from some genera had protease expression patterns that could benefit plant N nutrition, for example, we identified a Janthinobacterium phylotype and two Burkholderiales that depolymerize organic N near young roots and a Rhizobacter with elevated protease levels near mature roots. These taxon-resolved gene expression results provide an ecological read-out of microbial interactions and controls on N dynamics in specific soil microhabitats and could be used to target potential plant N bioaugmentation strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284887PMC
http://dx.doi.org/10.1038/s41396-023-01402-3DOI Listing

Publication Analysis

Top Keywords

gene expression
12
expression
8
soil organic
8
protease expression
8
root detritus
8
organic
6
soil
5
expression macromolecular
4
macromolecular organic
4
organic nitrogen
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Columbia University, New York, NY, USA.

Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: In recent decades, epidemiological and experimental studies have looked into the role of pesticides, particularly the herbicide paraquat, in the development of Parkinson's disease. Horseradish tree (Moringa oleifera) is an ethnobotanical plant with lots of therapeutic potential, but there is a dearth of information on the bioactive properties of the seed alkaloid extracts.

Method: This study examined the modulatory effects of various concentrations of an alkaloid extract from the seeds of Horseradish Tree (Moringa oleifera) on the survival rate of flies exposed to paraquat, as well as certain biochemical and molecular markers related to Parkinson's disease in the heads of the flies.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.

Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!