Open access to rodent cognitive data has lagged behind the rapid generation of large open-access datasets in other areas of neuroscience, such as neuroimaging and genomics. One contributing factor has been the absence of uniform standardization in experiments and data output, an issue that has particularly plagued studies in animal models. Touchscreen-automated cognitive testing of animal models allows standardized outputs that are compatible with open-access sharing. Touchscreen datasets can be combined with different neuro-technologies such as fiber photometry, miniscopes, optogenetics, and MRI to evaluate the relationship between neural activity and behavior. Here we describe a platform that allows deposition of these data into an open-access repository. This platform, called MouseBytes, is a web-based repository that enables researchers to store, share, visualize, and analyze cognitive data. Here we present the architecture, structure, and the essential infrastructure behind MouseBytes. In addition, we describe MouseBytes+, a database that allows data from complementary neuro-technologies such as imaging and photometry to be easily integrated with behavioral data in MouseBytes to support multi-modal behavioral analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104860PMC
http://dx.doi.org/10.1038/s41597-023-02106-1DOI Listing

Publication Analysis

Top Keywords

cognitive data
8
animal models
8
data
7
mousebytes
5
open science
4
science data
4
data sharing
4
cognitive
4
sharing cognitive
4
cognitive neuroscience
4

Similar Publications

Diabetes is a chronic lifelong condition that requires consistent self-care and daily lifestyle adjustments. Effective disease management involves regular blood glucose monitoring and ongoing nursing support. Inadequate education and poor self-management are key factors contributing to increased mortality among diabetic individuals.

View Article and Find Full Text PDF

Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.

Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).

View Article and Find Full Text PDF

Purpose: To investigate potential mechanisms of a digital rehabilitation intervention associated with improved mobility among adults undertaking rehabilitation.

Materials And Methods: Causal mediation analysis of the AMOUNT trial (ACTRN12614000936628). Participants were randomised to digitally-enabled rehabilitation (virtual reality video games, activity monitors, and handheld computer devices prescribed by a physiotherapist) and usual care or usual care alone.

View Article and Find Full Text PDF

Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).

View Article and Find Full Text PDF

Background: As the global population ages, there is an increasing prevalence of mild cognitive impairment and dementia. Protecting and preserving cognitive function in older adults has become a critical public health concern.

Methods: This study utilized data from four phases of the Chinese Longitudinal Healthy Longevity Survey conducted from 2008 to 2018, encompassing a total of 2454 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!