Solution-processed organic-inorganic hybrid perovskite solar cells are among the candidates to replace the traditional silicon solar cells due to their excellent power conversion efficiency (PCE). Despite this considerable progress, understanding the properties of the perovskite precursor solution is critical for perovskite solar cells (PSCs) to achieve high performance and reproducibility. However, the exploration of perovskite precursor chemistry and its effects on photovoltaic performances has been limited thus far. Herein, we modified the equilibrium of chemical species inside the precursor solution using different photoenergy and heat pathways to identify the corresponding perovskite film formation. The illuminated perovskite precursors exhibited a higher density of high-valent iodoplumbate species, resulting in the fabricated perovskite films with reduced defect density and uniform distribution. Conclusively, the perovskite solar cells prepared by the photoaged precursor solution had not only improved PCE but also enhanced current density, confirmed by device performance, conductive atomic force microscopy (C-AFM), and external quantum efficiency (EQE). This innovative precursor photoexcitation is a simple and effective physical process for boosting perovskite morphology and current density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104826PMC
http://dx.doi.org/10.1038/s41598-023-32468-wDOI Listing

Publication Analysis

Top Keywords

solar cells
20
precursor solution
16
perovskite solar
16
perovskite precursor
12
perovskite
10
high-valent iodoplumbate
8
iodoplumbate species
8
current density
8
precursor
6
solar
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!