Ubiquitination has crucial roles in many cellular processes, and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using stable isotope labeling by amino acids in cell culture-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control, is dependent on UBE2D3. We show by Targets of Ubiquitin Ligases Identified by Proteomics 2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that the catalytic activity of UBE2D3 is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control. Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209342PMC
http://dx.doi.org/10.1016/j.mcpro.2023.100548DOI Listing

Publication Analysis

Top Keywords

ube2d3
13
protein quality
12
quality control
12
ube2d3 depletion
12
ubiquitinome profiling
8
ube2d3 targets
8
cellular processes
8
enzymes substrates
8
in vivo substrates
8
identify in vivo
8

Similar Publications

Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3.

MedComm (2020)

January 2025

Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen China.

Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time.

View Article and Find Full Text PDF

E2-Ub-R74G strategy reveals E2-specific ubiquitin conjugation profiles in live cells.

Nat Chem Biol

January 2025

State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.

The E2 ubiquitin (Ub)-conjugating enzyme primarily determines Ub conjugation as Ub-isopeptide (lysine), Ub-oxyester (serine/threonine) or Ub-thioester (cysteine). However, E2-specific Ub conjugation profiles within cells remain elusive. Here we developed the fusion E2-Ub-R74G profiling (FUSEP) strategy to access E2-specific Ub conjugation profiles in cells with amino acid resolution.

View Article and Find Full Text PDF

UBC13 is an orthologue of Homo sapiens ubiquitin-conjugation E2 enzymes described in Leishmania mexicana, a null mutant lacking this gene cannot be produced, suggesting essential functions in this parasite. Leishmania infantum is an etiological agent of visceral leishmaniasis, the most severe type of disease that is potentially fatal if untreated. The ubiquitination process has been targeted for leishmanicidal compounds, indicating its essential function in parasite homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • * A study utilized bulk and single-cell RNA-sequencing data to analyze UBE2-related genes (UBE2RGs) in ccRCC and developed a machine learning model to predict patient survival outcomes, achieving strong accuracy in assessing 1-, 3-, and 5-year overall survival.
  • * The research identified a three-gene prognostic model (UBE2C, UBE2D3, UBE2T) that shows potential for improving patient prognosis,
View Article and Find Full Text PDF

Cross-Tissue Regulatory Network Analyses Reveal Novel Susceptibility Genes and Potential Mechanisms for Endometriosis.

Biology (Basel)

October 2024

Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.

Endometriosis (EMT) is a common gynecological disease with a strong genetic component, while its precise etiology remains elusive. This study aims to integrate transcriptome-wide association study (TWAS), Mendelian randomization (MR), and bioinformatics analyses to reveal novel putatively causal genes and potential mechanisms. We obtained summary-level data of the Genotype-Tissue Expression Project (GTEx), v8 expression quantitative loci (eQTL) data, and the genome-wide association study (GWAS) data of EMT and its subtypes from the R11 release results of the FinnGen consortium for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!