MALT1 paracaspase is overexpressed in hepatocellular carcinoma and promotes cancer cell survival and growth.

Life Sci

Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey. Electronic address:

Published: June 2023

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, therapeutic management of HCC remains a challenge, emphasizing the importance of exploring novel targets. MALT1 paracaspase is a druggable signaling molecule whose dysregulation has been linked to hematological and solid tumors. However, the role of MALT1 in HCC remains poorly understood, leaving its molecular functions and oncogenic implications unclear. Here we provide evidence that MALT1 expression is elevated in human HCC tumors and cell lines, and that correlates with tumor grade and differentiation state, respectively. Our results indicate that ectopic expression of MALT1 confers increased cell proliferation, 2D clonogenic growth, and 3D spheroid formation in well differentiated HCC cell lines with relatively low MALT1 levels. In contrast, stable silencing of endogenous MALT1 through RNA interference attenuates these aggressive cancer cell phenotypes, as well as migration, invasion, and tumor-forming ability, in poorly differentiated HCC cell lines with higher paracaspase expression. Consistently, we find that pharmacological inhibition of MALT1 proteolytic activity with MI-2 recapitulates MALT1 depletion phenotypes. Finally, we show that MALT1 expression is positively correlated with NF-kB activation in human HCC tissues and cell lines, suggesting that its tumor promoting functions may involve functional interaction with the NF-kB signaling pathway. This work unveils new insights into the molecular implications of MALT1 in hepatocarcinogenesis and places this paracaspase as a potential marker and druggable liability in HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.121690DOI Listing

Publication Analysis

Top Keywords

cell lines
16
malt1
11
malt1 paracaspase
8
hepatocellular carcinoma
8
cancer cell
8
hcc
8
hcc remains
8
malt1 expression
8
human hcc
8
differentiated hcc
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.

Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.

Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Sharp Therapeutics, Pittsburgh, PA, USA.

Background: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.

View Article and Find Full Text PDF

Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.

Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!