Biomass, photosynthetic activity, and biomolecule composition in Chlorella fusca (Chlorophyta) cultured in a raceway pond operated under greenhouse conditions.

J Biotechnol

Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Facultad de Ciencias, Campus Univ, Teatinos s/n E-29071, Málaga, Spain.

Published: April 2023

Raceways are widely used as microalgae culture systems due to their low cost, but they are not the best option for biomass yield. Understanding in situ photosynthetic performance can be a first step to increase their biomass productivity. This study aimed at comparing the real time photosynthetic activity in a greenhouse raceway culture (250 L) with discrete measurements under laboratory conditions. We evaluated the photophysiology and biochemical composition of Chlorella fusca culture up to 120 h. In situ photosynthetic activity was continuously monitored and compared to discrete ex situ measurements; biochemical compounds were measured daily. The results showed a final biomass density of 0.45 g L (5 days - 120 h) and an increase of the electron transport rate (ETR) up to 48 h but decreased thereafter. When the relative ETR was estimated considering the absorption coefficient (a) positive correlations of this parameter with photosynthetic capacity, cell density, biomass, biocompounds and antioxidant activity were obtained, whereas no correlation was detected without considering a. In situ photosynthesis monitoring showed higher absolute maximal ETR (10 - 160 μmol ms) than discrete ex situ measurements. We demonstrated the importance of considering the light absorption coefficient for expressing photosynthetic capacity and showed that C. fusca can produce, in the short-term, bioactive compounds that are correlated to photosynthetic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2023.04.005DOI Listing

Publication Analysis

Top Keywords

photosynthetic activity
12
composition chlorella
8
chlorella fusca
8
situ photosynthetic
8
discrete situ
8
situ measurements
8
absorption coefficient
8
photosynthetic capacity
8
photosynthetic
6
biomass
5

Similar Publications

Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.

View Article and Find Full Text PDF

Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.

View Article and Find Full Text PDF

The Southern Ocean, a region highly vulnerable to climate change, plays a vital role in regulating global nutrient cycles and atmospheric CO via the biological carbon pump. Diatoms, photosynthetically active plankton with dense opal skeletons, are key to this process as their exoskeletons are thought to enhance the transfer of particulate organic carbon to depth, positioning them as major vectors of carbon storage. Yet conflicting observations obscure the mechanistic link between diatoms, opal and particulate organic carbon fluxes, especially in the twilight zone where greatest flux losses occur.

View Article and Find Full Text PDF

In contrast to microplastics, studying the interactions of nanoplastics (NPs) with primary producers such as marine microalgae remains challenging. This is attributed to the lack of adequate visualization methods that can distinguish NPs from autofluorescent biological material such as marine algae. The aim of this study was to develop a method for labeling and visualizing nonfluorescent micro- and nanoplastics (MNPs) of various polymer types, shapes, and sizes, in interaction with marine primary producers, which are autofluorescent.

View Article and Find Full Text PDF

Multiple physiological response analyses of Chlorella vulgaris exposed to silver nanoparticles, ciprofloxacin, and their combination.

Environ Toxicol Chem

January 2025

Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.

The combination of silver nanoparticles (AgNPs) and ciprofloxacin (CIP) can be considered an alternative to combat multidrug-resistant microbial infections. However, knowledge about their combined toxicity is scarce after being released in an aquatic environment. The present study evaluated the individual toxicity of AgNPs and CIP and their combined toxicity on the unicellular green microalga Chlorella vulgaris, evaluating cellular responses and conducting metabolomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!