Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. SIGNIFICANCE: Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2023.104905 | DOI Listing |
Cell Mol Gastroenterol Hepatol
December 2024
Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China. Electronic address:
Background & Aims: Crotonylation (Kcr), a newly identified post-translation modification (PTM), has been confirmed to be involved in diverse biological processes and human diseases as well. Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a serious threat to people's health. Augmenter of liver regeneration (ALR) is an important liver regulatory protein, and the insufficiency of ALR expression is reported to accelerate liver steatosis progression to liver fibrosis or even hepatic carcinoma (HCC).
View Article and Find Full Text PDFJ Proteome Res
December 2024
College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China.
Front Mol Biosci
October 2024
Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China.
Ecotoxicol Environ Saf
December 2024
Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China. Electronic address:
Fluoride is an essential trace element for human. Adequate levels of fluoride are crucial for maintaining skeletal growth, but excessive fluoride exposure entering the body can cause renal damage, including damaged renal tubules and impaired renal function. However, the mechanism on fluoride-induced kidney injury remains unclear.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
The incidence of pancreatic cancer has been increasing globally in recent years and dietary is a well-defined factor contributing to its carcinogenesis. In this study, we showed that in a cerulein-induced KC (Pdx1-cre; LSL-Kras G12D/+) mouse model, a fasting-mimicking diet (FMD)─comprising fasting for 3 days followed by 4 days of refeeding, repeated over three 1-week cycles─significantly retards the progression of pancreatic carcinogenesis. FMD treatment altered gut microbiota, notably boosting butyrate-producing bacteria and elevating butyric acid levels in pancreatic tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!