Direct and gut microbiota-mediated toxicities of environmental antibiotics to fish and aquatic invertebrates.

Chemosphere

Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China. Electronic address:

Published: July 2023

The accumulation of antibiotics in the environment has ecological impacts that have received less attention than the human health risks of antibiotics, although the effects could be far-reaching. This review discusses the effects of antibiotics on the health of fish and zooplankton, manifesting in direct or dysbiosis-mediated physiological impairment. Acute effects of antibiotics in these organism groups are usually induced at high concentrations (LC at ∼100-1000 mg/L) that are not commonly present in aquatic environments. However, when exposed to sub-lethal, environmentally relevant levels of antibiotics (ng/L-μg/L) disruption of physiological homeostasis, development, and fecundity can occur. Antibiotics at similar or lower concentrations can induce dysbiosis of gut microbiota which can affect the health of fish and invertebrates. We show that the data about molecular-level effects of antibiotics at low exposure concentrations are limited, hindering environmental risk assessment and species sensitivity analysis. Fish and crustaceans (Daphnia sp.) were the two groups of aquatic organisms used most often for antibiotic toxicity testing, including microbiota analysis. While low levels of antibiotics impact the composition and function of gut microbiota in aquatic organisms, the correlation and causality of these changes to host physiology are not straightforward. In some cases, negative or lack of correlation have occurred, and, unexpectedly, gut microbial diversity has been unaffected or increased upon exposure to environmental levels of antibiotics. Efforts to incorporate functional analyses of gut microbiota are beginning to provide valuable mechanistic information, but more data is needed for ecological risk assessment of antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138692DOI Listing

Publication Analysis

Top Keywords

effects antibiotics
12
levels antibiotics
12
gut microbiota
12
antibiotics
11
health fish
8
risk assessment
8
aquatic organisms
8
direct gut
4
gut microbiota-mediated
4
microbiota-mediated toxicities
4

Similar Publications

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Background: In China many respiratory pathogens stayed low activities amid the COVID-19 pandemic due to strict measures and controls. We here aimed to study the epidemiological and clinical characteristics of pediatric inpatients with Mycoplasma pneumoniae pneumonia (MPP) after the mandatory COVID-19 restrictions were lifted, in comparison to those before the COVID-19 pandemic.

Methods: We here included 4,296 pediatric patients with MPP, hospitalized by two medical centers in Jiangsu Province, China, from January 2015 to March 2024.

View Article and Find Full Text PDF

Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.

Bioresour Bioprocess

January 2025

Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!