Excess nitrogen in water bodies is associated with a number of environmental problems, including hypoxia and eutrophication. Originating from anthropogenic activities such as fertilizer application, and influenced by watershed characteristics such as the structure of the drainage network, stream discharge, temperature, and soil moisture, factors influencing nitrogen transport and transformation are many and interconnected. This paper describes the development and application of a process-oriented nitrogen model based on the modeling framework of PAWS (Process-based Adaptive Watershed Simulator) that can describe coupled hydrologic, thermal and nutrient processes. The integrated model was tested for an agricultural watershed with complex land use, namely the Kalamazoo River watershed in Michigan, USA. Nitrogen transport and transformations on the landscape were modeled by representing multiple sources and processes (fertilizer/manure application, point sources, atmospheric deposition, nitrogen retention and removal in wetlands and other lowland storage, etc.) across multiple hydrologic domains (streams, groundwater, soil water). The coupled model provides a tool to examine nitrogen budgets and to quantify the impacts of human activities and agricultural practices on the riverine export of nitrogen species. Model results indicate that the river network removed approximately 5.96 % of the total anthropogenic nitrogen input to the watershed, and that the riverine export of nitrogen accounted for 29.22 % of the total anthropogenic inputs during 2004-2009 while the groundwater contribution of nitrogen to the rivers during the same period was found to be 18.53 % highlighting the important role of groundwater within the watershed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163348 | DOI Listing |
J Colloid Interface Sci
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.
View Article and Find Full Text PDFUnlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnviron Res
January 2025
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.
View Article and Find Full Text PDFEnviron Int
January 2025
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!