A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction. | LitMetric

Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction.

J Neural Eng

College of Information Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.

Published: May 2023

The gait phase and joint angle are two essential and complementary components of kinematics during normal walking, whose accurate prediction is critical for lower-limb rehabilitation, such as controlling the exoskeleton robots. Multi-modal signals have been used to promote the prediction performance of the gait phase or joint angle separately, but it is still few reports to examine how these signals can be used to predict both simultaneously.To address this problem, we propose a new method named transferable multi-modal fusion (TMMF) to perform a continuous prediction of knee angles and corresponding gait phases by fusing multi-modal signals. Specifically, TMMF consists of a multi-modal signal fusion block, a time series feature extractor, a regressor, and a classifier. The multi-modal signal fusion block leverages the maximum mean discrepancy to reduce the distribution discrepancy across different modals in the latent space, achieving the goal of transferable multi-modal fusion. Subsequently, by using the long short-term memory-based network, we obtain the feature representation from time series data to predict the knee angles and gait phases simultaneously. To validate our proposal, we design an experimental paradigm with random walking and resting to collect data containing multi-modal biomedical signals from electromyography, gyroscopes, and virtual reality.Comprehensive experiments on our constructed dataset demonstrate the effectiveness of the proposed method. TMMF achieves a root mean square error of0.090±0.022s in knee angle prediction and a precision of83.7±7.7% in gait phase prediction.We demonstrate the feasibility and validity of using TMMF to predict lower-limb kinematics continuously from multi-modal biomedical signals. This proposed method represents application potential in predicting the motor intent of patients with different pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/accd22DOI Listing

Publication Analysis

Top Keywords

transferable multi-modal
12
multi-modal fusion
12
knee angles
12
gait phases
12
gait phase
12
angles gait
8
continuous prediction
8
phase joint
8
joint angle
8
multi-modal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!