Objective: When inhaled, cannabis smoke interacts with airway tissues, including the nasal mucosa, which may lead to nasal pathologies. We examined the effect of cannabis smoke condensate (CSC) on nasal epithelial cell and tissue behaviors.
Methods: Human nasal epithelial cells were exposed or not to CSC at different concentrations (1, 5, 10, and 20 %) and for different durations. Cell adhesion and viability were assessed, as well as post-wound cell migration and lactate dehydrogenase (LDH) release.
Results: The nasal epithelial cells showed a larger cell size and a faint nucleus following exposure to CSC, compared to that observed in that control. This was supported by fewer adherent cells present after exposure for either 1 or 24 h to 5, 15, and 20 % CSC. CSC also had a significant toxic effect by reducing cell viability after both 1 and 24 h of exposure. This toxic effect was significant even at a low concentration (1 %) of CSC. The effects on nasal epithelial cell viability were confirmed by the decrease in cell migration. After the scratch and subsequent exposure to CSC for either 6 or 24 h, a complete inhibition of nasal epithelial cell migration was observed, compared to that found in the controls. CSC was toxic to the nasal epithelial cells, as the level of LDH significantly increased following cell exposure all CSC concentrations.
Conclusion: Cannabis smoke condensate had a negative effect on several nasal epithelial cell behaviors. These findings indicate that cannabis smoke could be a threat to nasal tissues and ultimately lead to nasal and sinus disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjoto.2023.103890 | DOI Listing |
Tissue Cell
December 2024
Department of Facial Features, 970 Hospital, Joint Service Support Force of the Chinese People's Liberation Army, Yantai, Shandong, China. Electronic address:
Allergic rhinitis (AR), common in children and adolescents, involves Lysophosphatidylcholine acyltransferase 1 (LPCAT1) catalyzing surfactant lipid biosynthesis and suppressing endoplasmic reticulum expression. However, the precise mechanism underlying the impact of LPCAT1 on epithelial cell damage in AR remains elusive. Hence, the present investigation elucidated the potential effect of LPCAT1 on epithelial cell damage in AR by inhibiting endoplasmic reticulum stress.
View Article and Find Full Text PDFCell Immunol
January 2025
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy. Electronic address:
Background: Lungs of people with Cystic Fibrosis (pwCF) are characterized by chronic inflammation and infection with P. aeruginosa. High levels of IL-17 A and F have been observed in sputum of pwCF and the interleukin-17(IL-17) family (A-to-F) has been suggested to play a key role in CF pulmonary disease.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.
Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.
View Article and Find Full Text PDFNat Immunol
January 2025
Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.
Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2 cell subsets, which was distinct from that of ancestral cases.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Anthropology, Stony Brook University, Stony Brook, New York, USA.
Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!