Glioma is heterogeneous disease that requires classification into subtypes with similar clinical phenotypes, prognosis or treatment responses. Metabolic-protein interaction (MPI) can provide meaningful insights into cancer heterogeneity. Moreover, the potential of lipids and lactate for identifying prognostic subtypes of glioma remains relatively unexplored. Therefore, we proposed a method to construct an MPI relationship matrix (MPIRM) based on a triple-layer network (Tri-MPN) combined with mRNA expression, and processed the MPIRM by deep learning to identify glioma prognostic subtypes. These Subtypes with significant differences in prognosis were detected in glioma (p-value < 2e-16, 95% CI). These subtypes had a strong correlation in immune infiltration, mutational signatures and pathway signatures. This study demonstrated the effectiveness of node interaction from MPI networks in understanding the heterogeneity of glioma prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106875DOI Listing

Publication Analysis

Top Keywords

identify glioma
8
glioma prognosis
8
deep learning
8
interaction mpi
8
prognostic subtypes
8
glioma
6
subtypes
5
constructing metabolism-protein
4
metabolism-protein interaction
4
interaction relationship
4

Similar Publications

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation.

View Article and Find Full Text PDF

Background: Treatment-related changes may occur due to radiation and temozolomide in glioblastoma and can mimic tumor progression on conventional MRI. DCE-MRI enables quantification of the extent of blood-brain barrier (BBB) disruption, providing information about areas of suspicious postcontrast T1 enhancement. We compared DCE-MRI processing methods for distinguishing true disease progression from pseudoprogression in high-grade gliomas (HGGs).

View Article and Find Full Text PDF

Prediction of isocitrate dehydrogenase (IDH) mutation status and epilepsy occurrence are important to glioma patients. Although machine learning models have been constructed for both issues, the correlation between them has not been explored. Our study aimed to exploit this correlation to improve the performance of both of the IDH mutation status identification and epilepsy diagnosis models in patients with glioma II-IV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!