There are various performance advantages when using temporal phase-based data encoding and coherent detection with a local oscillator (LO) in free-space optical (FSO) links. However, atmospheric turbulence can cause power coupling from the Gaussian mode of the data beam to higher-order modes, resulting in significantly degraded mixing efficiency between the data beam and a Gaussian LO. Photorefractive crystal-based self-pumped phase conjugation has been previously demonstrated to "automatically" mitigate turbulence with limited-rate free-space-coupled data modulation (e.g., <1 Mbit/s). Here, we demonstrate automatic turbulence mitigation in a 2-Gbit/s quadrature-phase-shift-keying (QPSK) coherent FSO link using degenerate four-wave-mixing (DFWM)-based phase conjugation and fiber-coupled data modulation. Specifically, we counter-propagate a Gaussian probe from the receiver (Rx) to the transmitter (Tx) through turbulence. At the Tx, we generate a Gaussian beam carrying QPSK data by a fiber-coupled phase modulator. Subsequently, we create a phase conjugate data beam through a photorefractive crystal-based DFWM involving the Gaussian data beam, the turbulence-distorted probe, and a spatially filtered Gaussian copy of the probe beam. Finally, the phase conjugate beam is transmitted back to the Rx for turbulence mitigation. Compared to a coherent FSO link without mitigation, our approach shows up to ∼14-dB higher LO-data mixing efficiency and achieves error vector magnitude (EVM) performance of <16% under various turbulence realizations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.487133DOI Listing

Publication Analysis

Top Keywords

free-space optical
8
phase conjugation
8
data modulation
8
data beam
8
data
5
automatic turbulence
4
turbulence mitigation
4
mitigation coherent
4
coherent free-space
4
optical links
4

Similar Publications

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF

Wireless microwave-to-optical conversion via programmable metasurface without DC supply.

Nat Commun

January 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.

Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.

View Article and Find Full Text PDF

Ferroelectric Optical Memristors Enabled by Non-Volatile Electro-Optic Effect.

Adv Mater

January 2025

Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.

Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.

View Article and Find Full Text PDF

Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an alternative, optical implementations of such processors have been proposed, capitalizing on the intrinsic information-processing capabilities of light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!