Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to evaluate the physicochemical compatibility of mixtures of synthetic and botanical limonoid-based insecticides, as well as the toxicity of these associations, in the management of Spodoptera frugiperda (J.E. Smith) under laboratory and field conditions. For this, the associations of 4 commercial botanical insecticides based on neem registered in Brazil (Azamax, Agroneem, Azact CE, and Fitoneem) were tested with synthetic insecticides from the group of growth regulators (IGRs [triflumuron, lufenuron, methoxyfenozide and tebufenozide]). When mixed, all combinations caused a significant reduction in the pH of the mixture and a significant increase in electrical conductivity. However, all tested combinations showed similar stability behavior to the negative control (distilled water), which demonstrated their physicochemical compatibility. Furthermore, in laboratory and field bioassays, mixtures of IRGs with limonoid-based formulations provided satisfactory effects in the management of S. frugiperda. However, binary mixtures of insecticide Intrepid 240 SC with Azamax or Azact CE (at LC25 previously estimated) showed the highest toxicities on S. frugiperda larvae in laboratory bioassays and damage reduction caused by S. frugiperda in a 2-yr field experiments. Therefore, mixtures of IGRs with limonoid-based botanical insecticides are promising alternatives for the management of S. frugiperda and important component of integrated pest management and insect resistance management programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toad070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!