Double Click: Unexpected 1:2 Stoichiometry in a Norbornene-Tetrazine Reaction.

J Org Chem

RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts 01605, United States.

Published: May 2023

We report a new reactivity for the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene and tetrazine. Instead of simple 1:1 condensation between norbornene- and tetrazine-conjugated biomolecules, we observed that dimeric products were preferentially formed. As such, an olefinic intermediate formed after the addition of the first tetrazine unit to norbornene rapidly undergoes a consecutive cycloaddition reaction with a second tetrazine unit to result in a conjugate with a 1:2 stoichiometric ratio. This unexpected dimer formation was consistently observed in the reactions of both small-molecule norbornenes and tetrazines, as well as oligonucleotide conjugates. When norbornene was replaced with bicyclononyne to bypass the formation of this olefinic reaction intermediate, the reactions resulted exclusively in rapid formation of the expected 1:1 stoichiometric conjugates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167953PMC
http://dx.doi.org/10.1021/acs.joc.2c02861DOI Listing

Publication Analysis

Top Keywords

tetrazine unit
8
double click
4
click unexpected
4
unexpected stoichiometry
4
stoichiometry norbornene-tetrazine
4
reaction
4
norbornene-tetrazine reaction
4
reaction report
4
report reactivity
4
reactivity inverse
4

Similar Publications

Article Synopsis
  • Amniotic epithelial stem cells (AEC) have regenerative potential, particularly through their conditioned medium (AEC-CM), which shows immunomodulatory and regenerative effects.
  • A novel hydrogel made from hyaluronic acid and polyethylene glycol was developed to encapsulate AEC-CM, with features like fast cross-linking and sustained growth factor release over 14 days.
  • Studies demonstrate that the encapsulated AEC-CM significantly enhances the suppression of peripheral blood mononuclear cells and promotes a shift towards the beneficial M2 macrophage phenotype, suggesting its viability as an immunomodulatory treatment for tissue regeneration.
View Article and Find Full Text PDF

Conditional Relay Activation of Theranostic Prodrug by Pretargeting Bioorthogonal Trigger and Fluorescence-Guided Visible Light Irradiation.

Angew Chem Int Ed Engl

December 2024

Laboratory of Medicinal Chemical Biology, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.

Bioorthogonalized light-responsive click-and-uncage platform has enabled precise cell surface engineering and timed payload release, but most of such photoactivatable prodrugs have "always-on" photoactivity leading to the dark toxicity. On the other hand, the conditionally activatable photocage is limited to the application of fluorogenic probe/photosensitizer liberation. Herein, we devise a conditionally activatable theranostic platform based on the tetrazine (Tz)-boron-dipyrromethene (BODIPY) construct, in which tetrazine serves as a quencher motif to disable both the fluorescence and photoresponsivity of BODIPY.

View Article and Find Full Text PDF

The unique electronic nature of the 1,2,4,5-tetrazine or -tetrazine (tz) ring has sparked tremendous scientific interest over the last few years. Tetrazines have found numerous applications, and their ability to coordinate to metal ions has opened the possibility of exploring their chemistry in both molecular systems and extended networks. The rich redox chemistry of -tetrazines allows them to exchange electrons and switch between their dihydro (Htz), neutral (tz), and radical (tz˙) forms.

View Article and Find Full Text PDF

In vitro and in vivo evaluation of a tetrazine-conjugated poly-L-lysine effector molecule labeled with astatine-211.

EJNMMI Radiopharm Chem

May 2024

Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden.

Background: A significant challenge in cancer therapy lies in eradicating hidden disseminated tumor cells. Within Nuclear Medicine, Targeted Alpha Therapy is a promising approach for cancer treatment tackling disseminated cancer. As tumor size decreases, alpha-particles gain prominence due to their high Linear Energy Transfer (LET) and short path length.

View Article and Find Full Text PDF

Manipulation of cell-cell interactions via cell surface modification is crucial in tissue engineering and cell-based therapy. To be able to monitor intercellular interactions, it can also provide useful information for understanding how the cells interact and communicate. We report herein a facile bioorthogonal strategy to promote and monitor cell-cell interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!