Background: Obesity is associated with derangement of cardiac metabolism and the development of subclinical cardiovascular disease. This prospective study examined the impact of bariatric surgery on cardiac function and metabolism.
Methods: Subjects with obesity underwent cardiac magnetic resonance imaging (CMR) at Massachusetts General Hospital before and after bariatric surgery between 2019 and 2021. The imaging protocol included Cine for global cardiac function assessment and creatine chemical exchange saturation transfer (CEST) CMR for myocardial creatine mapping.
Results: Thirteen subjects were enrolled, and 6 subjects [mean BMI 40.5 ± 2.6] had completed the second CMR (i.e. post-surgery), with a median follow-up of 10 months. The median age was 46.5 years, 67% were female, and 16.67% had diabetes. Bariatric surgery led to significant weight loss, with achieved mean BMI of 31.0 ± 2.0. Additionally, bariatric surgery resulted in significant reduction in left ventricular (LV) mass, LV mass index, and epicardial adipose tissue (EAT) volume. This was accompanied by slight improvement in LV ejection fraction compared to baseline. Following bariatric surgery, there was a significant increase in creatine CEST contrast. Subjects with obesity had significantly lower CEST contrast compared to subjects with normal BMI (n = 10), but this contrast was normalized after the surgery, and statistically similar to non-obese cohort, indicating an improvement in myocardial energetics.
Conclusions: CEST-CMR has the ability to identify and characterize myocardial metabolism in vivo non-invasively. These results demonstrate that in addition to reducing BMI, bariatric surgery may favorably affect cardiac function and metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100502 | PMC |
http://dx.doi.org/10.1007/s11695-023-06589-0 | DOI Listing |
Dynamic definition liposculpture (HD2) is considered a highly sought after procedure in body sculpting surgery by patients. Radiofrequency microneedling is a cutting edge technology with evidence-based outcomes demonstrating skin tightening and retraction. These ancillary procedures complement and enhance the results of dynamic definition liposculpture.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Division of Advanced Gastrointestinal and Bariatric Surgery, Mayo Clinic, Jacksonville, FL, USA.
Background: Addressing language barriers through accurate interpretation is crucial for providing quality care and establishing trust. While the ability of artificial intelligence (AI) to translate medical documentation has been studied, its role for patient-provider communication is less explored. This review evaluates AI's effectiveness in clinical translation by assessing accuracy, usability, satisfaction, and feedback on its use.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Faculty of Medicine and Dentistry, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
Metabolic dysfunction-associated steatotic liver disease (MASLD), hepatic fibrosis, and portal hypertension constitute an increasing public health problem due to the growing prevalence of obesity and diabetes. C-type natriuretic peptide (CNP) is an endogenous regulator of cardiovascular homeostasis, immune cell reactivity, and fibrotic disease. Thus, we investigated a role for CNP in the pathogenesis of MASLD.
View Article and Find Full Text PDFAnn Ital Chir
January 2025
General Surgeon, Arab Medical Center, 11181 Amman, Jordan.
Aim: Gastric twist is a rare, however, troublesome complication of laparoscopic sleeve gastrectomy. This report describes a case complicated by perforation and leak in addition to twist. The patient was managed conservatively and successfully.
View Article and Find Full Text PDFBr J Clin Pharmacol
January 2025
College of Pharmacy, Qatar University, Doha, Qatar.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!