Purpose: Running, jumping/landing and cutting/change of direction (CoD) are critical components of return to sport (RTS) following anterior cruciate ligament reconstruction (ACLR), however the electromyographic (EMG) activity patterns of the operated leg during the execution of these tasks are not clear.

Methods: A systematic review was conducted to retrieve EMG studies during running, jumping/landing and cutting/(CoD) in ACLR patients. MEDLINE, PubMed, SPORTDiscus and Web of Science databases were searched from 2000 to May, 2022 using a combination of keywords and their variations: "anterior cruciate ligament reconstruction" OR "ACLR", "electromyography" OR "EMG", "running", "jumping" OR "landing", "cutting" OR "change-of-direction" OR "CoD". The search identified studies comparing EMG data during running, landing and cutting/(CoD) between the involved limb and contralateral or control limbs. Risk of bias was assessed and quantitative analyses using effect sizes were performed.

Results: Thirty two studies met the inclusion criteria. Seventy five percent (24/32) of the studies reported altered EMG activity pattern of the ACLR leg during running, jumping/landing and cutting/(CoD) when compared with either the healthy control leg or the contra-lateral leg. Twelve studies showed decreased, delayed or earlier onset and delayed peak in quadriceps EMG activity with small to large effect sizes and 9 studies showed increased, delayed or earlier onset and delayed peak in hamstrings EMG activity with small to large effect sizes. Four studies showed a "hamstrings-dominant" strategy i.e. decreased quadriceps coupled with increased hamstrings EMG activity in both running and jumping/landing irrespective of graft type. One study reported that on the grounds of decreased quadriceps activity, lower hamstrings EMG activity was predictive of ipsilateral re-injury in ACLR patients.

Conclusion: This systematic review of Level III evidence showed that the ACLR leg displays decreased quadriceps or increased hamstrings EMG activity or both despite RTS. Simultaneous decreased quadriceps and increased hamstrings EMG activity was shown for both running and jumping/landing. From a clinical perspective this "hamstrings dominant" strategy can serve as a protective mechanism against graft re-injury.

Level Of Evidence: III.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105000PMC
http://dx.doi.org/10.1186/s40634-023-00603-1DOI Listing

Publication Analysis

Top Keywords

emg activity
32
running jumping/landing
20
hamstrings emg
20
decreased quadriceps
16
cruciate ligament
12
increased hamstrings
12
emg
10
activity
9
running landing
8
anterior cruciate
8

Similar Publications

The effects of diazepam on sleep depend on the photoperiod.

Acta Pharmacol Sin

January 2025

Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands.

Daylength (i.e., photoperiod) provides essential information for seasonal adaptations of organisms.

View Article and Find Full Text PDF

Most sports and leisure activities involve repetitive movements in the upper limb, which are typically linked to pain and discomfort in the neck and shoulder area. Movement variability is generally expressed by changes in movement parameters from one movement to another and is a time-dependent feature of repetitive activities. The purpose of this study was to examine the effect of repeated movement-induced fatigue on biomechanical coordination and variability in athletes with and without chronic shoulder pain (CSP).

View Article and Find Full Text PDF

Introduction: Spasticity is a common complication of stroke, which is related to poor motor recovery and limitations in the performance of activities. Both transcranial magnetic stimulation (TMS) and extracorporeal shockwave therapy (ESWT) are effective treatment methods for poststroke spasticity (PSS). However, there is no existing study exploring the safety and effectiveness of TMS combined with ESWT for PSS.

View Article and Find Full Text PDF

Corticomuscular Coherence Existed at the Single Motor Unit Level.

Neuroimage

January 2025

School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.

The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs.

View Article and Find Full Text PDF

Background: Alzheimer's disease is defined by the pathological aggregation of amyloid-beta and hyperphosphorylated tau. AD patients often exhibit other symptoms like metabolic and sleep dysfunction. Currently, it is unclear if impairments are a cause or consequence of Aβ or tau aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!