To investigate the clinical phenotype-genotype correlations of a family with Kennedy disease (KD) and improve our understanding of the disease. KD was confirmed after clinical phenotypic analyses, laboratory tests, polymerase chain reaction assays for cytosine-adenine-guanine (CAG) repeats, and neuro-electrophysiological tests. The disease was assessed using the KD1234 scale and the spinal and bulbar muscular atrophy functional rating scale. The average age of disease onset was 30.8 ± 2.85 years. Clinically diagnosed members had 48 CAG repeats (≥35 is abnormal) in the androgen receptor gene. The patients exhibited gynecomastia and testicular dysfunction. The lesions mainly involved the medulla oblongata and spinal cord. Progesterone and serum creatine kinase levels were significantly high. Electromyography showed chronic neurogenic damage and abnormal sensory and motor conduction in family members who did not participate in sports, exercise, or physical hobbies. Our study showed that this family had a stable inheritance of CAG repeats, and the genotype was consistent with the clinical phenotype. Gynecomastia was the first symptom, with progressive androgen resistance resulting in testicular atrophy, infertility, and sexual dysfunction. Changes in serum creatine kinase may indicate the progression or relief of symptoms, and rehabilitation may delay the progression of muscle atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101244PMC
http://dx.doi.org/10.1097/MD.0000000000033502DOI Listing

Publication Analysis

Top Keywords

cag repeats
12
clinical phenotype
8
family kennedy
8
kennedy disease
8
serum creatine
8
creatine kinase
8
disease
5
genotype clinical
4
phenotype analysis
4
family
4

Similar Publications

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disease characterized by symptoms like ataxia, dementia, and epilepsy, caused by an expansion of CAG repeats in the ATROPHIN 1 (ATN1) gene.
  • Researchers developed Drosophila (fruit fly) models that express either normal ATN1 (Q7) or a pathogenic version with expanded repeats (Q88), revealing that the pathogenic variant significantly reduces fly motility, lifespan, and affects internal structures more severely than the normal version.
  • RNA sequencing identified pathways related to protein quality control that are altered by pathogenic ATN1, and subsequent genetic experiments highlighted the
View Article and Find Full Text PDF

Mutant huntingtin protein decreases with CAG repeat expansion: implications for therapeutics and bioassays.

Brain Commun

November 2024

Department of Neurodegenerative Disease, Huntington's Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in the huntingtin (HTT) protein. The mutant CAG repeat is unstable and expands in specific brain cells and peripheral tissues throughout life. Genes involved in the DNA mismatch repair pathways, known to act on expansion, have been identified as genetic modifiers; therefore, it is the rate of somatic CAG repeat expansion that drives the age of onset and rate of disease progression.

View Article and Find Full Text PDF

The accurate characterization of triplet repeats, especially the overrepresented CAG repeats, is increasingly relevant for several reasons. First, germline expansion of CAG repeats above a gene-specific threshold causes multiple neurodegenerative disorders; for instance, Huntington's disease (HD) is triggered by >36 CAG repeats in the huntingtin (HTT) gene. Second, extreme expansions up to 800 CAG repeats have been found in specific cell types affected by the disease.

View Article and Find Full Text PDF

Trinucleotide repeats in DNA exhibit a dual nature due to their inherent instability. While their rapid expansion can diversify gene expression during evolution, exceeding a certain threshold can lead to diseases such as Huntington's disease (HD), a neurodegenerative condition, triggered by >36 C-A-G repeats in exon 1 of the Huntingtin gene. Notably, the discovery of somatic instability (SI) of the tract allows these mutations, inherited from an affected parent, to further expand throughout the patient's lifetime, resulting in a mosaic brain with specific neurons exhibiting variable and often extreme CAG lengths, ultimately leading to their death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!