Soybean production is severely hampered by saline-alkaline stress caused by saline-alkalization. Plants have aldehydrogenase (ALDH) family members that convert reactive aldehydes to carboxylic acids to remove active aldehyde molecules. However, little is known about the increased saline-alkali tolerance caused by the ALDH function in soybean. Here, we introduced a previously identified ALDH coding gene from into the soybean genome to investigate its critical role in response to saline-alkali stress. Transgenic soybean with increased aldehyde dehydrogenase activity showed significant tolerance to saline-alkali stress. It reduced malondialdehyde (MDA) content compared to its receptor, suggesting that over-expression of accelerated soybean tolerance to saline-alkali stress by increasing aldehyde dehydrogenase activity, which is responsible for scavenging toxic MDA. To further analyze the inner mechanisms that allow transgenic plants to tolerate saline-alkali stress, we sequenced the transcriptome and metabolome of P3 (wild type, WT) and transgenic lines which were separately treated with water and a saline-alkali solution. When subjected to saline-alkali stress, the integrated analysis of the transcriptome and metabolome suggested that several genes related to cell wall structure crucial for preserving cell wall extensibility and plasticity were largely responsible for restoring homeostasis within the transgenic cells compared to WT. Metabolites, including both necessary ingredients for cell wall genesis and harmful production produced during the saline-alkali stress response, could be transported efficiently with the help of the ABC transporter, reducing the negative effects of saline-alkali stress. These findings suggest that introducing increases transgenic soybean tolerance to saline-alkali stress may through cell wall structure maintenance and metabolites transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086354 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1165384 | DOI Listing |
Plants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010010, China.
is one of the typical ecological grass species, characterized by its strong salt tolerance. Hexokinase (HXK) plays a crucial role in plant growth, development, and resistance to abiotic stresses. To understand the function of in the salt tolerance of , this study identified and analyzed the gene family members using the whole-genome data of .
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing 163712, China.
Background: Saline-alkali stress is a major factor limiting the growth of oats. Sugar is the primary carbon and energy source in plants which regulates plant development and growth by regulating enzyme activity and gene expression. Sucrose, glucose, and fructose are ubiquitous plant-soluble sugars that act as signalling molecules in the transcriptional regulation of various metabolic and defence-related genes.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China.
(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of under alkaline stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!