suppression ameliorates retinal ganglion cell degeneration in mice.

Neural Regen Res

State Key Laboratory of Ophthalmology, Optometry and Vision Science; Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.

Published: October 2023

Slit-Robo GTPase-activating protein 2 (SRGAP2) plays important roles in axon guidance, neuronal migration, synapse formation, and nerve regeneration. However, the role of SRGAP2 in neuroretinal degenerative disease remains unclear. In this study, we found that SRGAP2 protein was first expressed in the retina of normal mice at the embryonic stage and was mainly located in the mature retinal ganglion cell layer and the inner nuclear layer. SRGAP2 protein in the retina and optic nerve increased after optic nerve crush. Then, we established a heterozygous knockout (Srgap2) mouse model of optic nerve crush and found that Srgap2 suppression increased retinal ganglion cell survival, lowered intraocular pressure, inhibited glial cell activation, and partially restored retinal function. In vitro experiments showed that Srgap2 suppression activated the mammalian target of rapamycin signaling pathway. RNA sequencing results showed that the expression of small heat shock protein genes (Cryaa, Cryba4, and Crygs) related to optic nerve injury were upregulated in the retina of Srgap2 mice. These results suggest that Srgap2 suppression reduced the robust activation of glial cells, activated the mammalian target of rapamycin signaling pathway related to nerve protein, increased the expression of small heat shock protein genes, inhibited the degeneration of retinal ganglion cells, and partially restored optic nerve function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328280PMC
http://dx.doi.org/10.4103/1673-5374.369122DOI Listing

Publication Analysis

Top Keywords

optic nerve
20
retinal ganglion
16
ganglion cell
12
srgap2 suppression
12
srgap2
9
srgap2 protein
8
nerve crush
8
partially restored
8
activated mammalian
8
mammalian target
8

Similar Publications

Purpose: To present a modified evisceration technique with a full-thickness horizontal sclerotomy and assess post-operative motility and long-term outcomes.

Methods: This is a retrospective chart review of patients who underwent evisceration with a single surgeon (TJM). The standard initial steps of evisceration were performed.

View Article and Find Full Text PDF

Background: To compare structural and vascular parameters between advanced pseudoexfoliation glaucoma (PXG) and primary open-angle glaucoma (POAG).

Methods: One hundred and six eyes of 81 patients were enrolled in this cross-sectional study. All patients underwent complete ophthalmic examination and measurement of the thickness of the peripapillary retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC).

View Article and Find Full Text PDF

Background: Optic nerve schwannomas are an extremely rare pathology in neurosurgery. Their origin is rather debatable given the structure of the optic nerve, which does not typically have Schwann cells therein. However, a number of clinical cases of optic nerve tumors classified as schwannomas have been described in the literature.

View Article and Find Full Text PDF

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!