AI Article Synopsis

  • Hypoxic-ischemic encephalopathy is a serious condition in newborns with high rates of morbidity and limited treatment options, leading researchers to study it in neonatal rats.
  • The study used a specific rat model to compare effects of hypoxic-ischemic reperfusion brain injury versus simple hypoxic-ischemic brain injury, revealing that mitochondrial proteins and signs of ferroptosis were prevalent in the reperfusion model.
  • Results indicated that reperfusion worsens brain injury while also triggering protective responses related to ferroptosis, suggesting new directions for treatment and understanding of the condition in neonates.

Article Abstract

Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328270PMC
http://dx.doi.org/10.4103/1673-5374.369117DOI Listing

Publication Analysis

Top Keywords

brain injury
40
hypoxic-ischemic reperfusion
20
reperfusion brain
20
model hypoxic-ischemic
16
hypoxic-ischemic brain
16
rat model
12
hypoxic-ischemic
12
hypoxic-ischemic encephalopathy
12
brain
11
injury
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!