Environmental and economic issues resulting from the unsustainable management of sewage sludge from wastewater have necessitated the development of eco-friendly sewage sludge disposal methods, whereas stormwater effluent contains tremendous amounts of pollutants. This study compares the feasibility and environmental impacts associated with incorporating biofilters with sludge-based activated carbon (SBAC) versus commercial activated carbon (CAC) for stormwater treatment. The results demonstrate that the construction and disposal life-cycle stages are the dominant contributors to several environmental impact categories, including resource scarcity, carcinogenic toxicity, terrestrial ecotoxicity, and ozone formation indicators. Across multiple impact categories, the incorporation of biofilters with SBAC can reduce the negative environmental impacts associated with biofilter construction and disposal by 40% over a 50-year analysis period. In contrast, the most significant improvement is on construction-dominant indicators, where the decreased need for biofilter reconstruction results in a higher reduction in environmental impacts. Economically, amending the biofilter with SBAC can increase profits by up to 66% due to extending its lifespan. This study shows that SBAC has similar performance as CAC for lowering the negative environmental impacts resulting from biofilter construction, while increasing the overall net profits of the system. However, converting sewage sludge to an effective sorbent (SBAC) and incorporating SBAC into a biofilter to capture pollutants from stormwater is an economically and environmentally sustainable solution available to practitioners to manage sewage sludge and stormwater effluent. This solution protects the environment in a cost efficient, sustainable manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!