A novel thermosensitive persulfate controlled-release hydrogel based on agarose/silica composite for sustained nitrobenzene degradation from groundwater.

J Hazard Mater

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Published: March 2023

The increasing risk of organic contamination of groundwater poses a serious threat to the environment and human health, causing an urgent need to develop long-lasting and adaptable remediation materials. Controlled-release materials (CRMs) are capable of encapsulating oxidants to achieve long-lasting release properties in aquifers and considered to be effective strategies in groundwater remediation. In this study, novel hydrogels (ASGs) with thermosensitive properties were prepared based on agarose and silica to achieve controlled persulfate (PS) release. By adjusting the composition ratio, the gelation time and internal pore structure of the hydrogels were regulated for groundwater application, which in turn affected the PS encapsulated amount and release properties. The hydrogels exhibited significant temperature responsiveness, with 6.8 times faster gelation rates and 2.8 times longer controlled release ability at 10 ℃ than at 30 ℃. The ASGs were further combined with zero-valent iron to achieve long-lasting degradation of the typical nitrobenzene compound 2,4-dinitrotoluene (2,4-DNT), and the degradation performance was maintained at 50 % within 14 PV, which was significantly improved compared with that of the PS/ZVI system. This study provided new concepts for the design of controlled-release materials and theoretical support for the remediation of organic contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130619DOI Listing

Publication Analysis

Top Keywords

organic contamination
8
controlled-release materials
8
achieve long-lasting
8
release properties
8
novel thermosensitive
4
thermosensitive persulfate
4
persulfate controlled-release
4
controlled-release hydrogel
4
hydrogel based
4
based agarose/silica
4

Similar Publications

Visual detection of kanamycin with functionalized Au nanoparticles.

Mikrochim Acta

January 2025

Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.

A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.

View Article and Find Full Text PDF

Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.

View Article and Find Full Text PDF

Identification of Novel Iodinated Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Soils Using a Nontargeted Molecular Network Approach.

Environ Sci Technol

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.

View Article and Find Full Text PDF

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!