Microplastics (MPs) that enter the soil can alter the physicochemical and biochemical properties of soil and affect speciation of heavy metals (HMs), thereby perturbing the bioavailability of HMs. However, the mechanisms underlying these effects are not understood. Therefore, we investigated the effects of MPs from poly (butyleneadipate-co-terephthalate)-based biodegradable mulch (BM) and polyethylene mulch (PM) in Cd- or As-contaminated soil on soil properties and speciation of HMs. MPs were characterised using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The addition of MPs reduced the bioavailability of HMs in soil and promoted the transformation of HMs into inert fractions. The mechanisms underlying the reduction of the bioavailability of HMs in soils could be as follows: (1) the entry of MPs into the soil changed its properties, which reduced the bioavailability of HMs; (2) FTIR and XPS analyses revealed that the hydroxyl and carboxyl groups and benzene ring present on the surface of aged MPs stabilized complexes (As(V)-O) with As(V) may have directly reduced the bioavailability of As(V) in soil; (3) aged BM exposed more amounts and types of reactive functional groups and was more effective in stabilising soil HMs than PM. Overall, this study provides new insights regarding the complexation mechanisms of soil HMs by MPs from different plastic mulch sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130638DOI Listing

Publication Analysis

Top Keywords

bioavailability hms
16
reduced bioavailability
12
soil
10
hms
9
poly butyleneadipate-co-terephthalate-based
8
butyleneadipate-co-terephthalate-based biodegradable
8
mechanisms underlying
8
hms mps
8
soil hms
8
mps
7

Similar Publications

The ecology of watersheds plays an important role in regulating regional climate and human activities. The sediment-soil system in the middle and lower reaches of the Yellow River Basin (Henan section) was explored. The spatial distribution characteristics of heavy metals (HMs) showed that tributaries, which are affected by anthropogenic activities, contain higher concentrations of HMs than the main channel.

View Article and Find Full Text PDF

Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals.

J Environ Manage

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India. Electronic address:

Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations.

View Article and Find Full Text PDF

An efficient fungi-biochar-based system for advancing sustainable management of combined pollution.

Environ Pollut

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:

Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.

View Article and Find Full Text PDF

Plants colonization accelerates galena oxidation, mineralogical transformation, and microbial community reshaping under the soil phytoremediation processes.

Environ Res

December 2024

College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:

The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied.

View Article and Find Full Text PDF

Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!