Genome Biol
State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Published: April 2023
Background: Tibetans are genetically adapted to high-altitude environments. Though many studies have been conducted, the genetic basis of the adaptation remains elusive due to the poor reproducibility for detecting selective signatures in the Tibetan genomes.
Results: Here, we present whole-genome sequencing (WGS) data of 1001 indigenous Tibetans, covering the major populated areas of the Qinghai-Tibetan Plateau in China. We identify 35 million variants, and more than one-third of them are novel variants. Utilizing the large-scale WGS data, we construct a comprehensive map of allele frequency and linkage disequilibrium and provide a population-specific genome reference panel, referred to as 1KTGP. Moreover, with the use of a combined approach, we redefine the signatures of Darwinian-positive selection in the Tibetan genomes, and we characterize a high-confidence list of 4320 variants and 192 genes that have undergone selection in Tibetans. In particular, we discover four new genes, TMEM132C, ATP13A3, SANBR, and KHDRBS2, with strong signals of selection, and they may account for the adaptation of cardio-pulmonary functions in Tibetans. Functional annotation and enrichment analysis indicate that the 192 genes with selective signatures are likely involved in multiple organs and physiological systems, suggesting polygenic and pleiotropic effects.
Conclusions: Overall, the large-scale Tibetan WGS data and the identified adaptive variants/genes can serve as a valuable resource for future genetic and medical studies of high-altitude populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099689 | PMC |
http://dx.doi.org/10.1186/s13059-023-02912-1 | DOI Listing |
Int J Mol Sci
January 2025
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
With the rapid advancement of high-throughput sequencing technologies, whole genome sequencing (WGS) has emerged as a crucial tool for studying genetic variation and population structure. Utilizing population genomics tools to analyze resequencing data allows for the effective integration of selection signals with population history, precise estimation of effective population size, historical population trends, and structural insights, along with the identification of specific genetic loci and variations. This paper reviews current whole genome sequencing technologies, detailing primary research methods, relevant software, and their advantages and limitations within population genomics.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
Acute myeloid leukemia (AML) is an aggressive malignancy that poses significant challenges due to high rates of relapse and resistance to treatment, particularly in older populations. While therapeutic advances have been made, survival outcomes remain suboptimal. The evolution of DNA and RNA sequencing technologies, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-Seq), has significantly enhanced our understanding of AML at the molecular level.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
: Monomicrobial necrotizing fasciitis is associated with exceedingly high mortality rates. Although effective antimicrobial therapy is an important part of treatment, the traditional microbiological diagnostic methods are not fast enough to meaningfully influence early therapeutic decisions. : Here, we report the application of the BioMérieux Biofire Filmarray Joint Infection Panel (BFJIP) for the rapid detection of the causative agent and susceptibility prediction in such a case.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China.
is an important and popular crustacean species in China, producing huge economic benefits. Large individuals of are preferred due to market demand. The long-term goal of our research group is to produce a new variety of with better growth performance and stronger abilities to resist environmental changes through mass selection.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands.
Background: The Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) networks 'Seq4AMR' and 'B2B2B AMR Dx' were established to promote collaboration between microbial whole genome sequencing (WGS) and antimicrobial resistance (AMR) stakeholders. A key topic discussed was the frequent variability in results obtained between different microbial WGS-related AMR gene prediction workflows. Further, comparative benchmarking studies are difficult to perform due to differences in AMR gene prediction accuracy and a lack of agreement in the naming of AMR genes (semantic conformity) for the results obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.