The ability of Janus nanoparticles to establish biological logic systems has been widely exploited, yet conventional non/uni-porous Janus nanoparticles are unable to fully mimic biological communications. Here we demonstrate an emulsion-oriented assembly approach for the fabrication of highly uniform Janus double-spherical MSN&mPDA (MSN, mesoporous silica nanoparticle; mPDA, mesoporous polydopamine) nanoparticles. The delicate Janus nanoparticle possesses a spherical MSN with a diameter of ~150 nm and an mPDA hemisphere with a diameter of ~120 nm. In addition, the mesopore size in the MSN compartment is tunable from ~3 to ~25 nm, while those in the mPDA compartments range from ~5 to ~50 nm. Due to the different chemical properties and mesopore sizes in the two compartments, we achieve selective loading of guests in different compartments, and successfully establish single-particle-level biological logic gates. The dual-mesoporous structure enables consecutive valve-opening and matter-releasing reactions within one single nanoparticle, facilitating the design of single-particle-level logic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-023-01183-4 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, CHINA.
Proximity labeling (PL) has emerged as a powerful technique for the in situ elucidation of biomolecular interaction networks. However, PL methods generally rely on single-biological-hierarchy control of spatial localization at the labeling site, which limits their application in multi-tiered biological systems. Here, we introduced another enzymatic reaction upstream of an enzyme-based PL reaction and targeted the two enzymes to markers indicating different biological hierarchies, establishing a two-level spatially localized proximity labeling (P2L) platform for in situ molecular measurement and manipulation.
View Article and Find Full Text PDFCult Health Sex
January 2025
Centre for Gender Research, University of Uppsala, Sweden.
Temporal constructs are central to reproduction and kinship, as epitomised by the pervasive concept of the biological clock within public imaginaries. While queer scholarship has problematised linear models of kinship and reproductive temporality, the specific temporalities associated with donor-conceived families have received less scholarly attention, despite the increasing prevalence of these family structures. In this article, we explore the question: how does donor conception reconfigure temporal logics.
View Article and Find Full Text PDFA significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.
View Article and Find Full Text PDFPharmacol Res
January 2025
College of Biological and Food Engineering, Qujing Normal University, 655011, Qujing, Yunnan, China. Electronic address:
The hallmarks of aging encompass a variety of molecular categories (genomic, telomeric, and epigenetic), organelles (proteostasis, autophagy, and mitochondria), cellular components (including stem cells), systems (such as intercellular communication and chronic inflammation), and environmental factors (dysbiosis and nutrient sensing). These hallmarks play a crucial role in the aging process. Despite their intricate interconnections, the relationships among the hallmarks of aging remain unclear.
View Article and Find Full Text PDFCancer Treat Rev
December 2024
Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy. Electronic address:
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!