Accurate identification of NAD-capped RNAs is essential for delineating their generation and biological function. Previous transcriptome-wide methods used to classify NAD-capped RNAs in eukaryotes contain inherent limitations that have hindered the accurate identification of NAD caps from eukaryotic RNAs. In this study, we introduce two orthogonal methods to identify NAD-capped RNAs more precisely. The first, NADcapPro, uses copper-free click chemistry and the second is an intramolecular ligation-based RNA circularization, circNC. Together, these methods resolve the limitations of previous methods and allowed us to discover unforeseen features of NAD-capped RNAs in budding yeast. Contrary to previous reports, we find that 1) cellular NAD-RNAs can be full-length and polyadenylated transcripts, 2) transcription start sites for NAD-capped and canonical mG-capped RNAs can be different, and 3) NAD caps can be added subsequent to transcription initiation. Moreover, we uncovered a dichotomy of NAD-RNAs in translation where they are detected with mitochondrial ribosomes but minimally on cytoplasmic ribosomes indicating their propensity to be translated in mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101982PMC
http://dx.doi.org/10.1038/s42003-023-04774-6DOI Listing

Publication Analysis

Top Keywords

nad-capped rnas
16
circnc methods
8
accurate identification
8
nad caps
8
rnas
6
methods
5
nad-capped
5
nadcappro circnc
4
methods accurate
4
accurate profiling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!