Application of machine learning algorithms in thermal images for an automatic classification of lumbar sympathetic blocks.

J Therm Biol

Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, Valencia, Spain; Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain. Electronic address:

Published: April 2023

Purpose: There are no previous studies developing machine learning algorithms in the classification of lumbar sympathetic blocks (LSBs) performance using infrared thermography data. The objective was to assess the performance of different machine learning algorithms to classify LSBs carried out in patients diagnosed with lower limbs Complex Regional Pain Syndrome as successful or failed based on the evaluation of thermal predictors.

Methods: 66 LSBs previously performed and classified by the medical team were evaluated in 24 patients. 11 regions of interest on each plantar foot were selected within the thermal images acquired in the clinical setting. From every region of interest, different thermal predictors were extracted and analysed in three different moments (minutes 4, 5, and 6) along with the baseline time (just after the injection of a local anaesthetic around the sympathetic ganglia). Among them, the thermal variation of the ipsilateral foot and the thermal asymmetry variation between feet at each minute assessed and the starting time for each region of interest, were fed into 4 different machine learning classifiers: an Artificial Neuronal Network, K-Nearest Neighbours, Random Forest, and a Support Vector Machine.

Results: All classifiers presented an accuracy and specificity higher than 70%, sensitivity higher than 67%, and AUC higher than 0.73, and the Artificial Neuronal Network classifier performed the best with a maximum accuracy of 88%, sensitivity of 100%, specificity of 84% and AUC of 0.92, using 3 predictors.

Conclusion: These results suggest thermal data retrieved from plantar feet combined with a machine learning-based methodology can be an effective tool to automatically classify LSBs performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2023.103523DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithms
12
thermal images
8
classification lumbar
8
lumbar sympathetic
8
sympathetic blocks
8
lsbs performance
8
classify lsbs
8
region interest
8
artificial neuronal
8

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!