Palmitate alters miRNA content of small extracellular vesicles secreted from NPY/AgRP-expressing hypothalamic neurons.

Brain Res

Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Published: July 2023

Exosomes (sEVs) are extracellular vesicles involved in the pathogenesis of obesity. Notably, exosomal microRNAs (miRNAs) have emerged as crucial mediators of communication between cells and are involved in the development of obesity. One region of the brain known to be dysregulated in obesity is the hypothalamus. It coordinates whole-body energy homeostasis through stimulation and inhibition of the orexigenic neuropeptide (NPY)/agouti-related peptide (AgRP) neurons and anorexigenic proopiomelanocortin (POMC) neurons. A role for hypothalamic astrocytic exosomes in communication with POMC neurons was previously elucidated. Yet, it was unknown whether NPY/AgRP neurons secreted exosomes. We previously established that the saturated fat palmitate alters the intracellular levels of miRNAs and we now questioned whether palmitate would also alter the miRNA content of exosomal miRNAs. We found that the mHypoE-46 cell line secreted particles consistent with the size of exosomes and that palmitate altered levels of a spectrum of miRNAs associated with exosomes. The predicted KEGG pathways of the collective miRNA predicted targets included fatty acid metabolism and type II diabetes mellitus. Of note, one of these altered secreted miRNAs was miR-2137, which was also altered within the cells. We also found that while sEVs collected from the mHypoE-46 neurons increased Pomc mRNA in the mHypoA-POMC/GFP-2 cells after 48 h, the effect was absent with sEVs isolated following palmitate treatment, indicating another potential route by which palmitate promotes obesity. Hypothalamic neuronal exosomes may therefore play a role in the control of energy homeostasis that may be disrupted in obese conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2023.148367DOI Listing

Publication Analysis

Top Keywords

palmitate alters
8
mirna content
8
extracellular vesicles
8
energy homeostasis
8
pomc neurons
8
palmitate
6
neurons
6
exosomes
6
mirnas
5
alters mirna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!