Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tauopathy is a typical feature of Alzheimer's disease of major importance because it strongly correlates with the severity of cognitive deficits experienced by patients. During the pathology, it follows a characteristic spatiotemporal course which takes its origin in the transentorhinal cortex, and then gradually invades the entire forebrain. To study the mechanisms of tauopathy, and test new therapeutic strategies, it is necessary to set-up relevant and versatile in vivo models allowing to recapitulate tauopathy. With this in mind, we have developed a model of tauopathy by overexpression of the human wild-type Tau protein in retinal ganglion cells in mice (RGCs). This overexpression led to the presence of hyperphosphorylated forms of the protein in the transduced cells as well as to their progressive degeneration. The application of this model to mice deficient in TREM2 (Triggering Receptor Expressed on Myeloid cells-2, an important genetic risk factor for AD) as well as to 15-month-old mice showed that microglia actively participate in the degeneration of RGCs. Surprisingly, although we were able to detect the transgenic Tau protein up to the terminal arborization of RGCs at the level of the superior colliculi, spreading of the transgenic Tau protein to post-synaptic neurons was detected only in aged animals. This suggests that there may be neuron-intrinsic- or microenvironment mediators facilitating this spreading that appear with aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2023.106116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!