Smoke exposure levels prediction following laboratory combustion of Pinus koraiensis plantation surface fuel.

Sci Total Environ

Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China.

Published: July 2023

High concentrations of harmful gases released from forest fire will pose a short-term hazard to fire-fighters' cardiopulmonary function, even threaten their lives. In this study, laboratory experiments were conducted to examine the relationship between harmful gases concentrations and burning environment and fuel characteristics. In the experiments, fuel beds were created with controlled moisture contents and fuel loads; a wind tunnel device was used to conduct 144 trials, each with a specific wind speed. The easily predicted fire behavioral characteristics and the harmful gases concentrations such as CO, CO, NOx, SO which were released during fuel combustion were measured and analyzed. The results showed that the influences of wind speed, fuel moisture content, and fuel load on the flame length are in accordance with the fundamental theory of forest combustion. The contributions by controled variables to the influence on the short-term exposure concentration of CO and CO can be ranked as fuel load > wind speed > fuel moisture. The R of the established linear model that was used to predict Mixed Exposure Ratio was 0.98. Our results can help protect the health and lives of forest fire-fighters and can be used by forest fire smoke management to guide fire suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163402DOI Listing

Publication Analysis

Top Keywords

harmful gases
12
wind speed
12
fuel
9
forest fire
8
gases concentrations
8
speed fuel
8
fuel moisture
8
fuel load
8
smoke exposure
4
exposure levels
4

Similar Publications

This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.

View Article and Find Full Text PDF

Textronic Sensors of Hazardous Gaseous Substances.

Materials (Basel)

January 2025

Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 18. Stefanowskiego Str., 90-924 Lodz, Poland.

Toxic materials are a threat in workplaces and the environment, as well as households. In them, gaseous substances are included, especially ones without any colour or fragrance, due to their non-detectability with the human senses. In this article, an attempt was made to find a solution for its detection in various conditions with the use of intelligent textiles.

View Article and Find Full Text PDF

Antibacterial Efficacy Comparison of Electrolytic and Reductive Silver Nanoparticles Against .

Antibiotics (Basel)

January 2025

Department of Physics Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, 1st Colombo St., Karangmalang, Sleman, Yogyakarta 55281, Indonesia.

The aim of this study was to develop an electrolysis system to produce silver nanoparticles free from toxic gases, as the most common reduction and electrolysis techniques produce nitrogen dioxide (NO) as a byproduct, which is harmful to human health. The new electrolysis system used two identical silver plate electrodes, replacing silver and carbon rods, and used water as the electrolyte instead of silver nitrate (AgNO) solution since AgNO is the source of NO. The electrolytic silver nanoparticles (ESNs) produced by the new system were characterized and compared with reductive silver nanoparticles (RSNs).

View Article and Find Full Text PDF

Cigarette brand variant names and characteristics such as the taste and feel of the smoke can mislead consumers into believing some products are less harmful. We assessed the characteristics of three common cigarette variants sold in Australia, "gold", "blue" and "red", to determine which characteristics differed by color, and which affected tar, nicotine and carbon monoxide (TNCO) yields. TNCO yields, physical parameters, expanded tobacco and filter ventilation were measured in cigarette color variants from eight brands.

View Article and Find Full Text PDF

This work examines the impact of the electrification of the Holon-Bat Yam passenger train line (central Israel) on air pollutant concentrations using data collected from air quality monitoring stations that operated at the train stations across the electrified train line. We present statistically significant reduction in the annual average NO, NO and NO concentrations (29-45%, 79-85% and 65-75%, respectively), attributed to the electrification of the passenger train line. The drop in the NO and NO concentrations was much stronger than in the NO concentrations, since NO is the main nitrogen species emitted by diesel locomotives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!