Abandoned metal(loid) mine tailings show inhospitable conditions for the establishment of above- and below-ground communities (e.g., high metal(loid) levels, organic matter and nutrient deficiency). This worsens in semiarid areas due to the harsh climate conditions. Fertility islands (vegetation patches formed by plants that spontaneously colonize the tailings) can serve as potential nucleation spots fostering beneficial plant-microbial interactions. However, less attention has been paid to the soil invertebrates living beneath these patches and their functional role. Here, we studied whether the spontaneous plant colonization of abandoned metal(loid) mine tailings led to a greater presence of soil microarthropod communities and whether this could contribute to improving ecosystem functionality. Microarthropods were extracted, taxonomically identified and subsequently assigned to different functional groups (saphrophages, omnivores, predators) in bare soils and differently vegetated patches within metalliferous mine tailings and surrounding forests in southeast Spain. Microarthropod communities were significantly different in bare soils compared with vegetated patches in mine tailings and surrounding forests. Plant colonization led to an increase in microarthropod abundance in tailing soils, especially of mites and springtails. Moreover, saprophages and omnivores, but not predators, were favored in vegetated patches. The initial microarthropod colonization was mainly linked to higher organic matter accumulation and greater microbial activity in the vegetated patches within mine tailings. Moreover, soil formation processes already initiated in the tailings were beneficial for soil biota establishment. Thus, below-ground communities created an anchorage point for plant communities by primarily starting heterotrophic activities in the vegetated patches, thereby contributing to recover ecosystem functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163394 | DOI Listing |
Microbiome
December 2024
College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
J Hazard Mater
December 2024
Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China. Electronic address:
The long-term mining of vanadium-titanium (V-Ti) magnetite has generated a large accumulation of tailings, which can lead to metal pollution via microbial bioleaching. Current research has focused on the bioleaching of minerals, and a few studies have explored microbial responses to metals only through limited metabolite concentrations. However, the trigger mechanisms of metal release during the V-Ti magnetite tailing bioleaching and key gene regulatory pathways for organic acid metabolism are still unclear.
View Article and Find Full Text PDFScientifica (Cairo)
December 2024
Grupo de Investigación en Biotecnología y Ciencia de Los Alimentos, Universidad Tecnológica del Perú, Av. Tacna y Arica 160, Arequipa, Peru.
The presence of heavy metals in water represents a risk to the life of all species on the planet. Phytoremediation is an effective alternative to remove heavy metals from contaminated aqueous environments. In the present research, L.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.
This study evaluated the contribution of soil dust deposited on the surface of reed canary grass (Phalaris arundinacea) grown on historic lead (Pb) mine sites to the overall contamination of the biomass, with implications for phytoremediation, valorization and utilization. By applying a novel combination of imaging of plant material using X-ray computed tomography (XCT) and scanning electron microscopy (SEM), with washing experiments and bulk analysis, the research aimed to distinguish between (a) Pb uptake through biological processes (phyto-extraction), and (b) surficial dust and physical entrapment of Pb-rich dust on plants cultivated in contaminated soils (surface-contamination). The study established the presence and distribution of Pb-rich particles, which were difficult to remove even by means of sequential washing in 1 M hydrochloric acid and surfactant.
View Article and Find Full Text PDFJ Environ Manage
December 2024
INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600, Mieres, Spain.
Here we describe two innovative approaches for remediating sediments contaminated with organotin compounds (OTCs, mainly TBT) and metal(loid)s. The first involves chemical stabilization through amendments with nanoscale zero-valent iron (nZVI), dunite mining waste, and coal tailings, materials that have not been previously studied for OTC remediation. The second focuses on physical soil washing, using grain-size separation and magnetic separation to isolate the most polluted fractions, thereby reducing the volume of contaminated material destined for landfills.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!